Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from model import GPT, GPTConfig # Assuming your model code is in a file named model.py | |
import tiktoken | |
# Load the trained model | |
def load_model(model_path): | |
config = GPTConfig() # Adjust this if you've changed the default config | |
model = GPT(config) | |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) | |
model.eval() | |
return model | |
model = load_model('GPT_model.pth') # Replace with the actual path to your .pth file | |
enc = tiktoken.get_encoding('gpt2') | |
def generate_text(prompt, max_length=100, temperature=0.7): | |
input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0) | |
with torch.no_grad(): | |
for _ in range(max_length): | |
outputs = model(input_ids) | |
next_token_logits = outputs[0][:, -1, :] / temperature | |
next_token = torch.multinomial(torch.softmax(next_token_logits, dim=-1), num_samples=1) | |
input_ids = torch.cat([input_ids, next_token], dim=-1) | |
if next_token.item() == enc.encode('\n')[0]: | |
break | |
generated_text = enc.decode(input_ids[0].tolist()) | |
return generated_text | |
# Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."), | |
gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature") | |
], | |
outputs=gr.Textbox(label="Generated Text"), | |
title="GPT-2 Text Generator", | |
description="Enter a prompt and generate text using a fine-tuned GPT-2 model." | |
) | |
# Launch the app | |
iface.launch() |