import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # import spaces # Removed as @spaces.GPU is not used with async from duckduckgo_search import DDGS import time import torch from datetime import datetime import os import subprocess import numpy as np from typing import List, Dict, Tuple, Any, Optional, Union from functools import lru_cache import asyncio import threading from concurrent.futures import ThreadPoolExecutor import warnings import traceback # For detailed error logging import re # For text cleaning import shutil # For checking sudo import html # For escaping HTML # --- Configuration --- MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B" MAX_SEARCH_RESULTS = 5 TTS_SAMPLE_RATE = 24000 MAX_TTS_CHARS = 1000 # Max characters for a single TTS chunk MAX_NEW_TOKENS = 300 TEMPERATURE = 0.7 TOP_P = 0.95 KOKORO_PATH = 'Kokoro-82M' # Path to TTS model directory # --- Initialization --- # Use a ThreadPoolExecutor for blocking I/O or CPU-bound tasks executor = ThreadPoolExecutor(max_workers=os.cpu_count() or 4) # Use available cores # Suppress specific warnings warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated") warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.") # --- LLM Initialization --- llm_model: Optional[AutoModelForCausalLM] = None llm_tokenizer: Optional[AutoTokenizer] = None llm_device = "cpu" # Default device try: print("Initializing LLM...") llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) llm_tokenizer.pad_token = llm_tokenizer.eos_token if torch.cuda.is_available(): llm_device = "cuda" torch_dtype = torch.float16 device_map = "auto" # Let accelerate handle distribution print(f"CUDA detected. Loading model with device_map='{device_map}', dtype={torch_dtype}") else: llm_device = "cpu" torch_dtype = torch.float32 # float32 for CPU device_map = {"": "cpu"} print(f"CUDA not found. Loading model on CPU with dtype={torch_dtype}") llm_model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map=device_map, low_cpu_mem_usage=True, torch_dtype=torch_dtype, # attn_implementation="flash_attention_2" # Optional: Uncomment if flash-attn is installed and compatible GPU ) print(f"LLM loaded successfully. Device map: {llm_model.hf_device_map if hasattr(llm_model, 'hf_device_map') else 'N/A'}") llm_model.eval() # Set to evaluation mode except Exception as e: print(f"FATAL: Error initializing LLM model: {str(e)}") print(traceback.format_exc()) # Depending on environment, you might exit or just disable LLM features llm_model = None llm_tokenizer = None print("LLM features will be unavailable.") # --- TTS Initialization --- VOICE_CHOICES = { 'πŸ‡ΊπŸ‡Έ Female (Default)': 'af', 'πŸ‡ΊπŸ‡Έ Bella': 'af_bella', 'πŸ‡ΊπŸ‡Έ Sarah': 'af_sarah', 'πŸ‡ΊπŸ‡Έ Nicole': 'af_nicole' } TTS_ENABLED = False tts_model: Optional[Any] = None # Define type more specifically if Kokoro provides it voicepacks: Dict[str, Any] = {} # Cache voice packs tts_device = "cpu" # Default device for TTS model # Use a lock for thread-safe access during initialization if needed, though Thread ensures sequential execution # tts_init_lock = threading.Lock() def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = None) -> subprocess.CompletedProcess: """Helper to run subprocess and capture output.""" print(f"Running command: {' '.join(cmd)}") try: result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd) if result.stdout: print(f"Stdout: {result.stdout.strip()}") if result.stderr: print(f"Stderr: {result.stderr.strip()}") return result except FileNotFoundError: print(f"Error: Command not found - {cmd[0]}") raise except subprocess.CalledProcessError as e: print(f"Error running command: {' '.join(e.cmd)}") if e.stdout: print(f"Stdout: {e.stdout.strip()}") if e.stderr: print(f"Stderr: {e.stderr.strip()}") raise def setup_tts_task(): """Initializes Kokoro TTS model and dependencies.""" global TTS_ENABLED, tts_model, voicepacks, tts_device print("[TTS Setup] Starting background initialization...") # Determine TTS device tts_device = "cuda" if torch.cuda.is_available() else "cpu" print(f"[TTS Setup] Target device: {tts_device}") can_sudo = shutil.which('sudo') is not None apt_cmd_prefix = ['sudo'] if can_sudo else [] try: # 1. Clone Kokoro Repo if needed if not os.path.exists(KOKORO_PATH): print(f"[TTS Setup] Cloning repository to {KOKORO_PATH}...") try: _run_subprocess(['git', 'lfs', 'install', '--system', '--skip-repo']) except Exception as lfs_err: print(f"[TTS Setup] Warning: git lfs install command failed: {lfs_err}. Continuing clone...") _run_subprocess(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', KOKORO_PATH]) try: print("[TTS Setup] Running git lfs pull...") _run_subprocess(['git', 'lfs', 'pull'], cwd=KOKORO_PATH) except Exception as lfs_pull_err: print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}") else: print(f"[TTS Setup] Directory {KOKORO_PATH} already exists.") # 2. Install espeak dependency print("[TTS Setup] Checking/Installing espeak...") try: _run_subprocess(apt_cmd_prefix + ['apt-get', 'update', '-qq']) _run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng']) print("[TTS Setup] espeak-ng installed or already present.") except Exception: print("[TTS Setup] espeak-ng failed, trying espeak...") try: _run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak']) print("[TTS Setup] espeak installed or already present.") except Exception as espeak_err: print(f"[TTS Setup] ERROR: Failed to install both espeak-ng and espeak: {espeak_err}. TTS disabled.") return # Critical dependency missing # 3. Load Kokoro Model and Voices if os.path.exists(KOKORO_PATH): sys_path_updated = False if KOKORO_PATH not in sys.path: sys.path.append(KOKORO_PATH) sys_path_updated = True try: from models import build_model from kokoro import generate as generate_tts_internal globals()['build_model'] = build_model # Make available globally globals()['generate_tts_internal'] = generate_tts_internal model_file = os.path.join(KOKORO_PATH, 'kokoro-v0_19.pth') if not os.path.exists(model_file): print(f"[TTS Setup] ERROR: Model file {model_file} not found. TTS disabled.") return print(f"[TTS Setup] Loading TTS model from {model_file} onto {tts_device}...") tts_model = build_model(model_file, tts_device) tts_model.eval() # Set to eval mode print("[TTS Setup] TTS model loaded.") # Load voices loaded_voices = 0 for voice_name, voice_id in VOICE_CHOICES.items(): voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt') if os.path.exists(voice_file_path): try: print(f"[TTS Setup] Loading voice: {voice_id} ({voice_name})") # map_location ensures it loads to the correct device voicepacks[voice_id] = torch.load(voice_file_path, map_location=tts_device) loaded_voices += 1 except Exception as e: print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}") else: print(f"[TTS Setup] Info: Voice file {voice_file_path} not found, skipping.") if loaded_voices == 0: print("[TTS Setup] ERROR: No voicepacks could be loaded. TTS disabled.") tts_model = None # Unload model if no voices return TTS_ENABLED = True print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}") except ImportError as ie: print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}. Check clone and path. TTS disabled.") except Exception as load_err: print(f"[TTS Setup] ERROR: Failed loading TTS model/voices: {load_err}. TTS disabled.") print(traceback.format_exc()) finally: # Clean up sys.path if modified if sys_path_updated and KOKORO_PATH in sys.path: sys.path.remove(KOKORO_PATH) else: print(f"[TTS Setup] ERROR: {KOKORO_PATH} directory not found. TTS disabled.") except Exception as e: print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}") print(traceback.format_exc()) # Ensure TTS is marked as disabled TTS_ENABLED = False tts_model = None voicepacks.clear() # Start TTS setup in a background thread print("Starting TTS setup thread...") tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True) tts_setup_thread.start() # --- Core Functions --- @lru_cache(maxsize=128) def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]: """Synchronous web search function with caching.""" print(f"[Web Search] Searching (sync): '{query}' (max_results={max_results})") try: with DDGS() as ddgs: results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y')) print(f"[Web Search] Found {len(results)} results.") formatted = [{ "id": i + 1, "title": res.get("title", "No Title"), "snippet": res.get("body", "No Snippet"), "url": res.get("href", "#"), } for i, res in enumerate(results)] return formatted except Exception as e: print(f"[Web Search] Error: {e}") print(traceback.format_exc()) return [] def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str: """Formats the prompt for the LLM, including context and instructions.""" current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") context_str = "\n\n".join( [f"[{res['id']}] {res['title']}\n{res['snippet']}" for res in context] ) if context else "No relevant web context found." return f"""You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context. Instructions: - Synthesize information from the context to answer concisely. - Cite sources using bracket notation like [1], [2], etc., corresponding to the context IDs. - If the context is insufficient, state that clearly. Do not add external information. - Use markdown for formatting. Current Time: {current_time} Web Context: --- {context_str} --- User Query: {query} Answer:""" def format_sources_html(web_results: List[Dict[str, Any]]) -> str: """Formats search results into HTML for display.""" if not web_results: return "
No sources found for this query.
" items_html = "" for res in web_results: title_safe = html.escape(res.get("title", "Source")) snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else "")) url = res.get("url", "#") items_html += f"""
[{res['id']}]
{title_safe}
{snippet_safe}
""" return f"
{items_html}
" async def generate_llm_answer(prompt: str) -> str: """Generates answer using the loaded LLM (Async Wrapper).""" if not llm_model or not llm_tokenizer: return "Error: LLM model is not available." print(f"[LLM Generate] Requesting generation (prompt length {len(prompt)})...") start_time = time.time() try: inputs = llm_tokenizer( prompt, return_tensors="pt", padding=True, truncation=True, max_length=1024, # Consider model's actual max length return_attention_mask=True ).to(llm_model.device) # Ensure inputs are on the same device as model parts with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)): # Run blocking model.generate in the executor thread pool outputs = await asyncio.get_event_loop().run_in_executor( executor, llm_model.generate, inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=MAX_NEW_TOKENS, temperature=TEMPERATURE, top_p=TOP_P, pad_token_id=llm_tokenizer.eos_token_id, eos_token_id=llm_tokenizer.eos_token_id, do_sample=True, num_return_sequences=1 ) # Decode only newly generated tokens relative to input output_ids = outputs[0][inputs.input_ids.shape[1]:] answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip() # Handle potential empty generation if not answer_part: # Sometimes the split method above is needed if the model includes the prompt full_output = llm_tokenizer.decode(outputs[0], skip_special_tokens=True) answer_marker = "Answer:" marker_index = full_output.rfind(answer_marker) if marker_index != -1: answer_part = full_output[marker_index + len(answer_marker):].strip() else: answer_part = "*Model generated an empty response.*" # Fallback message end_time = time.time() print(f"[LLM Generate] Generation complete in {end_time - start_time:.2f}s. Length: {len(answer_part)}") return answer_part except Exception as e: print(f"[LLM Generate] Error: {e}") print(traceback.format_exc()) return f"Error during answer generation: {str(e)}" async def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]: """Generates speech using the loaded TTS model (Async Wrapper).""" if not TTS_ENABLED or not tts_model or 'generate_tts_internal' not in globals(): print("[TTS Generate] Skipping: TTS not ready.") return None if not text or not text.strip(): print("[TTS Generate] Skipping: Empty text.") return None print(f"[TTS Generate] Requesting speech (length {len(text)}, voice '{voice_id}')...") start_time = time.time() try: # Verify voicepack availability actual_voice_id = voice_id if voice_id not in voicepacks: print(f"[TTS Generate] Warning: Voice '{voice_id}' not loaded. Trying default 'af'.") actual_voice_id = 'af' if 'af' not in voicepacks: print("[TTS Generate] Error: Default voice 'af' also not available.") return None # Clean text for TTS clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text) # Remove citations like [1], [2][3] clean_text = re.sub(r'[\*\#\`]', '', clean_text) # Remove markdown symbols clean_text = ' '.join(clean_text.split()) # Normalize whitespace if not clean_text: return None # Skip if empty after cleaning # Truncate if necessary if len(clean_text) > MAX_TTS_CHARS: print(f"[TTS Generate] Truncating text from {len(clean_text)} to {MAX_TTS_CHARS} chars.") clean_text = clean_text[:MAX_TTS_CHARS] last_punct = max(clean_text.rfind(p) for p in '.?! ') if last_punct != -1: clean_text = clean_text[:last_punct+1] clean_text += "..." print(f"[TTS Generate] Generating audio for: '{clean_text[:100]}...'") gen_func = globals()['generate_tts_internal'] voice_pack_data = voicepacks[actual_voice_id] # Run blocking TTS generation in the executor thread pool # Assuming 'afr' is the correct language code for Kokoro's default voices audio_data, _ = await asyncio.get_event_loop().run_in_executor( executor, gen_func, tts_model, # The loaded model object clean_text, # The cleaned text string voice_pack_data,# The loaded voice pack tensor/dict 'afr' # Language code (verify this is correct) ) if isinstance(audio_data, torch.Tensor): audio_np = audio_data.detach().cpu().numpy() elif isinstance(audio_data, np.ndarray): audio_np = audio_data else: print("[TTS Generate] Warning: Unexpected audio data type.") return None # Ensure audio is 1D float32 audio_np = audio_np.flatten().astype(np.float32) end_time = time.time() print(f"[TTS Generate] Audio generated in {end_time - start_time:.2f}s. Shape: {audio_np.shape}") return (TTS_SAMPLE_RATE, audio_np) except Exception as e: print(f"[TTS Generate] Error: {str(e)}") print(traceback.format_exc()) return None def get_voice_id_from_display(voice_display_name: str) -> str: """Maps the user-friendly voice name to the internal voice ID.""" return VOICE_CHOICES.get(voice_display_name, 'af') # Default to 'af' # --- Gradio Interaction Logic --- # Define type for chat history using the 'messages' format ChatHistoryType = List[Dict[str, str]] async def handle_interaction( query: str, history: ChatHistoryType, selected_voice_display_name: str ): """Main async generator function to handle user queries and update Gradio UI.""" print(f"\n--- Handling Query ---") print(f"Query: '{query}', Voice: '{selected_voice_display_name}'") if not query or not query.strip(): print("Empty query received.") # Need to yield the current state for all outputs yield history, "*Please enter a query.*", "
Enter a query to search.
", None, gr.Button(value="Search", interactive=True) return # Append user message to history current_history = history + [{"role": "user", "content": query}] # Add placeholder for assistant response current_history.append({"role": "assistant", "content": "*Searching...*"}) # 1. Initial State: Searching yield ( current_history, "*Searching the web...*", # Update answer area "
Searching the web...
", # Update sources area None, # No audio yet gr.Button(value="Searching...", interactive=False) # Update button state ) # 2. Perform Web Search (in executor) web_results = await asyncio.get_event_loop().run_in_executor( executor, get_web_results_sync, query ) sources_html = format_sources_html(web_results) # Update state: Generating Answer current_history[-1]["content"] = "*Generating answer...*" # Update assistant placeholder yield ( current_history, "*Generating answer...*", # Update answer area sources_html, # Show sources None, gr.Button(value="Generating...", interactive=False) ) # 3. Generate LLM Answer (async) llm_prompt = format_llm_prompt(query, web_results) final_answer = await generate_llm_answer(llm_prompt) # Update assistant message in history with the final answer current_history[-1]["content"] = final_answer # Update state: Generating Audio (if applicable) yield ( current_history, final_answer, # Show final answer sources_html, None, gr.Button(value="Audio...", interactive=False) if TTS_ENABLED else gr.Button(value="Search", interactive=True) # Enable search if TTS disabled ) # 4. Generate TTS Speech (async) audio_output_data = None tts_status_message = "" if not TTS_ENABLED: if tts_setup_thread.is_alive(): tts_status_message = "\n\n*(TTS initializing...)*" else: tts_status_message = "\n\n*(TTS disabled or failed)*" elif final_answer and not final_answer.startswith("Error"): voice_id = get_voice_id_from_display(selected_voice_display_name) audio_output_data = await generate_tts_speech(final_answer, voice_id) if audio_output_data is None: tts_status_message = "\n\n*(Audio generation failed)*" # 5. Final State: Show all results final_answer_with_status = final_answer + tts_status_message current_history[-1]["content"] = final_answer_with_status # Update history with status msg too print("--- Query Handling Complete ---") yield ( current_history, final_answer_with_status, # Show answer + TTS status sources_html, audio_output_data, # Output audio data (or None) gr.Button(value="Search", interactive=True) # Re-enable button ) # --- Gradio UI Definition --- # (CSS remains largely the same - ensure it targets default Gradio classes if elem_classes was removed) css = """ /* ... [Your existing refined CSS, but remove selectors using .gradio-examples if you were using it] ... */ /* Example: Style examples container via its parent or default class if needed */ /* .examples-container .gradio-examples { ... } */ /* This might still work depending on structure */ .gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; } #header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); } #header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); } #header h3 { color: #a8a9ab; } .search-container { background: #ffffff; border: 1px solid #e0e0e0; border-radius: 12px; box-shadow: 0 4px 16px rgba(0,0,0,0.05); padding: 1.5rem; margin-bottom: 1.5rem; } .search-box { padding: 0; margin-bottom: 1rem; display: flex; align-items: center; } .search-box .gradio-textbox { border-radius: 8px 0 0 8px !important; height: 44px !important; flex-grow: 1; } .search-box .gradio-dropdown { border-radius: 0 !important; margin-left: -1px; margin-right: -1px; height: 44px !important; width: 180px; flex-shrink: 0; } .search-box .gradio-button { border-radius: 0 8px 8px 0 !important; height: 44px !important; flex-shrink: 0; } .search-box input[type="text"] { background: #f7f7f8 !important; border: 1px solid #d1d5db !important; color: #1f2937 !important; transition: all 0.3s ease; height: 100% !important; padding: 0 12px !important;} .search-box input[type="text"]:focus { border-color: #2563eb !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; background: white !important; z-index: 1; } .search-box input[type="text"]::placeholder { color: #9ca3af !important; } .search-box button { background: #2563eb !important; border: none !important; color: white !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; transition: all 0.3s ease !important; height: 100% !important; } .search-box button:hover { background: #1d4ed8 !important; } .search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; } .results-container { background: transparent; padding: 0; margin-top: 1.5rem; } .answer-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; color: #1f2937; margin-bottom: 1.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); } .answer-box p { color: #374151; line-height: 1.7; } .answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; } .sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; } .sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; } .sources-container { margin-top: 0; } .source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; transition: background-color 0.2s; } .source-item:last-child { border-bottom: none; } .source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;} .source-content { flex: 1; min-width: 0;} /* Allow content to shrink */ .source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;} .source-title:hover { color: #1d4ed8; text-decoration: underline; } .source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; } .chat-history { /* Style the chatbot container */ max-height: 400px; overflow-y: auto; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; margin-top: 1rem; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; } .chat-history > div { padding: 1rem; } /* Add padding inside the chatbot display area */ .chat-history::-webkit-scrollbar { width: 6px; } .chat-history::-webkit-scrollbar-track { background: #f9fafb; } .chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; } .examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; } /* Default styling for example buttons (since elem_classes might not work) */ .examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 4px !important; font-size: 0.9em !important; padding: 6px 12px !important; border-radius: 4px !important; } .examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; } .markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; } .markdown-content h1, .markdown-content h2, .markdown-content h3 { color: #111827 !important; margin-top: 1.2em !important; margin-bottom: 0.6em !important; font-weight: 600; } .markdown-content h1 { font-size: 1.6em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em; } .markdown-content h2 { font-size: 1.4em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em;} .markdown-content h3 { font-size: 1.2em !important; } .markdown-content a { color: #2563eb !important; text-decoration: none !important; transition: all 0.2s; } .markdown-content a:hover { color: #1d4ed8 !important; text-decoration: underline !important; } .markdown-content code { background: #f3f4f6 !important; padding: 2px 6px !important; border-radius: 4px !important; font-family: monospace !important; color: #4b5563; font-size: 0.9em; } .markdown-content pre { background: #f3f4f6 !important; padding: 12px !important; border-radius: 8px !important; overflow-x: auto !important; border: 1px solid #e5e7eb;} .markdown-content pre code { background: transparent !important; padding: 0 !important; border: none !important; font-size: 0.9em;} .markdown-content blockquote { border-left: 4px solid #d1d5db !important; padding-left: 1em !important; margin-left: 0 !important; color: #6b7280 !important; } .markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; } .markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;} .markdown-content th { background: #f9fafb !important; font-weight: 600; } .accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; } .accordion > .label-wrap { padding: 10px 15px !important; } .voice-selector { margin: 0; padding: 0; height: 100%; } .voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;} .voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; } .voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; z-index: 1; position: relative;} .audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;} .audio-player audio { width: 100% !important; } .searching, .error { padding: 1rem; border-radius: 8px; text-align: center; margin: 1rem 0; border: 1px dashed; } .searching { background: #eff6ff; color: #3b82f6; border-color: #bfdbfe; } .error { background: #fef2f2; color: #ef4444; border-color: #fecaca; } .no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;} @keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } } .searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; } /* Dark Mode Styles (Optional - keep if needed) */ .dark .gradio-container { background-color: #111827 !important; } .dark #header { background: linear-gradient(135deg, #1f2937, #374151); } .dark #header h3 { color: #9ca3af; } .dark .search-container { background: #1f2937; border-color: #374151; } .dark .search-box input[type="text"] { background: #374151 !important; border-color: #4b5563 !important; color: #e5e7eb !important; } .dark .search-box input[type="text"]:focus { border-color: #3b82f6 !important; background: #4b5563 !important; box-shadow: 0 0 0 2px rgba(59, 130, 246, 0.3) !important; } .dark .search-box input[type="text"]::placeholder { color: #9ca3af !important; } .dark .search-box button { background: #3b82f6 !important; } .dark .search-box button:hover { background: #2563eb !important; } .dark .search-box button:disabled { background: #4b5563 !important; } .dark .answer-box { background: #1f2937; border-color: #374151; color: #e5e7eb; } .dark .answer-box p { color: #d1d5db; } .dark .answer-box code { background: #374151; color: #9ca3af; } .dark .sources-box { background: #1f2937; border-color: #374151; } .dark .sources-box h3 { color: #f9fafb; } .dark .source-item { border-bottom-color: #374151; } .dark .source-item:hover { background-color: #374151; } .dark .source-number { color: #9ca3af; } .dark .source-title { color: #60a5fa; } .dark .source-title:hover { color: #93c5fd; } .dark .source-snippet { color: #d1d5db; } .dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; color: #d1d5db;} .dark .chat-history::-webkit-scrollbar-track { background: #374151; } .dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; } .dark .examples-container { background: #374151; border-color: #4b5563; } .dark .examples-container button { background: #1f2937 !important; border-color: #4b5563 !important; color: #d1d5db !important; } .dark .examples-container button:hover { background: #4b5563 !important; border-color: #6b7280 !important; } .dark .markdown-content { color: #d1d5db !important; } .dark .markdown-content h1, .dark .markdown-content h2, .dark .markdown-content h3 { color: #f9fafb !important; border-bottom-color: #4b5563; } .dark .markdown-content a { color: #60a5fa !important; } .dark .markdown-content a:hover { color: #93c5fd !important; } .dark .markdown-content code { background: #374151 !important; color: #9ca3af; } .dark .markdown-content pre { background: #374151 !important; border-color: #4b5563;} .dark .markdown-content pre code { background: transparent !important; } .dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; } .dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; } .dark .markdown-content th { background: #374151 !important; } .dark .accordion { background: #374151 !important; border-color: #4b5563 !important; } .dark .accordion > .label-wrap { color: #d1d5db !important; } .dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;} .dark .voice-selector select:focus { border-color: #3b82f6 !important; } .dark .audio-player { background: #374151 !important; border-color: #4b5563;} .dark .audio-player audio::-webkit-media-controls-panel { background-color: #374151; } .dark .audio-player audio::-webkit-media-controls-play-button { color: #d1d5db; } .dark .audio-player audio::-webkit-media-controls-current-time-display { color: #9ca3af; } .dark .audio-player audio::-webkit-media-controls-time-remaining-display { color: #9ca3af; } .dark .searching { background: #1e3a8a; color: #93c5fd; border-color: #3b82f6; } .dark .error { background: #7f1d1d; color: #fca5a5; border-color: #ef4444; } .dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;} """ import sys # Needed for sys.path manipulation in TTS setup with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo: # Use gr.State to store the chat history in the 'messages' format chat_history_state = gr.State([]) with gr.Column(): # Main container # Header with gr.Column(elem_id="header"): gr.Markdown("# πŸ” AI Search Assistant") gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice") # Search Area with gr.Column(elem_classes="search-container"): with gr.Row(elem_classes="search-box", equal_height=False): search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False) voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector") search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100) # Results Area with gr.Row(elem_classes="results-container", equal_height=False): # Left Column: Answer & History with gr.Column(scale=3): # Chatbot display (uses 'messages' format now) chatbot_display = gr.Chatbot( label="Conversation", bubble_full_width=True, height=500, elem_classes="chat-history", type="messages", # Use the recommended type avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else None) # Optional: Add avatar for assistant ) # Separate Markdown for status/intermediate answer answer_status_output = gr.Markdown(value="*Enter a query to start.*", elem_classes="answer-box markdown-content") # Audio Output audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player") # Right Column: Sources with gr.Column(scale=2): with gr.Column(elem_classes="sources-box"): gr.Markdown("### Sources") sources_output_html = gr.HTML(value="
Sources will appear here.
") # Examples Area with gr.Row(elem_classes="examples-container"): # REMOVED elem_classes from gr.Examples gr.Examples( examples=[ "Latest news about renewable energy", "Explain Large Language Models (LLMs)", "Symptoms and prevention tips for the flu", "Compare Python and JavaScript for web development", "Summarize the main points of the Paris Agreement", ], inputs=search_input, label="Try these examples:", ) # --- Event Handling Setup --- # Define the inputs and outputs for the Gradio event triggers event_inputs = [search_input, chat_history_state, voice_select] event_outputs = [ chatbot_display, # Updated chat history answer_status_output, # Status or final answer text sources_output_html, # Formatted sources audio_player, # Audio data search_btn # Button state (enabled/disabled) ] # Create a wrapper to adapt the async generator for Gradio's streaming updates async def stream_interaction_updates(query, history, voice_display_name): try: # Iterate through the states yielded by the handler async for state_update in handle_interaction(query, history, voice_display_name): yield state_update # Yield the tuple of output values except Exception as e: print(f"[Gradio Stream] Error during interaction: {e}") print(traceback.format_exc()) # Yield a final error state to the UI error_history = history + [{"role":"user", "content":query}, {"role":"assistant", "content":f"*Error: {e}*"}] yield ( error_history, f"An error occurred: {e}", "
Request failed.
", None, gr.Button(value="Search", interactive=True) ) finally: # Clear the text input after processing is complete (or errored out) # We need to yield the final state *plus* the cleared input # This requires adding search_input to the outputs list for the event triggers # For now, let's not clear it automatically to avoid complexity. # yield (*final_state_tuple, gr.Textbox(value="")) # Example if clearing input print("[Gradio Stream] Interaction stream finished.") # Connect the streaming function to the button click and input submit events search_btn.click( fn=stream_interaction_updates, inputs=event_inputs, outputs=event_outputs ) search_input.submit( fn=stream_interaction_updates, inputs=event_inputs, outputs=event_outputs ) if __name__ == "__main__": print("Starting Gradio application...") demo.queue(max_size=20).launch( debug=True, share=True, # server_name="0.0.0.0" # Optional: Bind to all interfaces )