import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import spaces # Keep for potential future use or other decorators from duckduckgo_search import DDGS import time import torch from datetime import datetime import os import subprocess import numpy as np from typing import List, Dict, Tuple, Any from functools import lru_cache import asyncio import threading from concurrent.futures import ThreadPoolExecutor import warnings import traceback # For detailed error logging # Suppress specific warnings if needed (optional) warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated") # Suppress another common warning with torch.compile backend # warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.") # --- Configuration --- MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B" MAX_SEARCH_RESULTS = 5 TTS_SAMPLE_RATE = 24000 MAX_TTS_CHARS = 1000 # Max characters for a single TTS chunk # GPU_DURATION = 60 # Informational only now, decorator is removed MAX_NEW_TOKENS = 300 # Increased slightly TEMPERATURE = 0.7 TOP_P = 0.95 KOKORO_PATH = 'Kokoro-82M' # Path to TTS model directory # --- Initialization --- # Use a ThreadPoolExecutor for potentially blocking I/O or CPU-bound tasks executor = ThreadPoolExecutor(max_workers=4) # Initialize model and tokenizer with better error handling try: print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) tokenizer.pad_token = tokenizer.eos_token print("Loading model...") # Determine device map based on CUDA availability device_map = "auto" if torch.cuda.is_available() else {"": "cpu"} torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Use float32 on CPU print(f"Attempting to load model with device_map='{device_map}' and dtype={torch_dtype}") model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map=device_map, # offload_folder="offload", # Enable if needed for large models and disk space is available low_cpu_mem_usage=True, # Important for faster loading torch_dtype=torch_dtype, # attn_implementation="flash_attention_2" # Optional: requires flash-attn installed, use if available for speedup on compatible GPUs ) print(f"Model loaded successfully. Device map: {model.hf_device_map}") # Ensure model is in evaluation mode model.eval() except Exception as e: print(f"FATAL: Error initializing LLM model: {str(e)}") print(traceback.format_exc()) raise # Stop execution if model loading fails # --- TTS Setup --- VOICE_CHOICES = { 'πŸ‡ΊπŸ‡Έ Female (Default)': 'af', 'πŸ‡ΊπŸ‡Έ Bella': 'af_bella', 'πŸ‡ΊπŸ‡Έ Sarah': 'af_sarah', 'πŸ‡ΊπŸ‡Έ Nicole': 'af_nicole' } TTS_ENABLED = False TTS_MODEL = None VOICEPACKS = {} # Cache voice packs # Initialize Kokoro TTS in a separate thread to avoid blocking startup def setup_tts(): global TTS_ENABLED, TTS_MODEL, VOICEPACKS # Check privileges for apt-get can_sudo = shutil.which('sudo') is not None try: # Check if Kokoro already exists if not os.path.exists(KOKORO_PATH): print("Cloning Kokoro-82M repository...") # Install git-lfs if not present (might need sudo/apt) try: lfs_install_cmd = ['git', 'lfs', 'install'] subprocess.run(lfs_install_cmd, check=True, capture_output=True, text=True) except (FileNotFoundError, subprocess.CalledProcessError) as lfs_err: print(f"Warning: git-lfs command failed: {lfs_err}. Cloning might be slow or incomplete.") clone_cmd = ['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', KOKORO_PATH] result = subprocess.run(clone_cmd, check=True, capture_output=True, text=True) print("Kokoro cloned successfully.") # print(result.stdout) # Can be verbose # Optionally pull LFS files again (sometimes clone doesn't get them all) try: print("Running git lfs pull...") lfs_pull_cmd = ['git', 'lfs', 'pull'] subprocess.run(lfs_pull_cmd, cwd=KOKORO_PATH, check=True, capture_output=True, text=True) print("git lfs pull completed.") except (FileNotFoundError, subprocess.CalledProcessError) as lfs_pull_err: print(f"Warning: git lfs pull failed: {lfs_pull_err}") else: print(f"{KOKORO_PATH} directory already exists.") # Install espeak (essential for phonemization) print("Attempting to install espeak-ng or espeak...") apt_update_cmd = ['apt-get', 'update', '-qq'] install_cmd_ng = ['apt-get', 'install', '-y', '-qq', 'espeak-ng'] install_cmd_legacy = ['apt-get', 'install', '-y', '-qq', 'espeak'] if can_sudo: apt_update_cmd.insert(0, 'sudo') install_cmd_ng.insert(0, 'sudo') install_cmd_legacy.insert(0, 'sudo') try: print(f"Running: {' '.join(apt_update_cmd)}") subprocess.run(apt_update_cmd, check=True, capture_output=True) print(f"Running: {' '.join(install_cmd_ng)}") subprocess.run(install_cmd_ng, check=True, capture_output=True) print("espeak-ng installed successfully.") except (FileNotFoundError, subprocess.CalledProcessError) as ng_err: print(f"espeak-ng installation failed ({ng_err}), trying espeak...") try: print(f"Running: {' '.join(install_cmd_legacy)}") subprocess.run(install_cmd_legacy, check=True, capture_output=True) print("espeak installed successfully.") except (FileNotFoundError, subprocess.CalledProcessError) as legacy_err: print(f"ERROR: Could not install espeak-ng or espeak: {legacy_err}. TTS functionality will be disabled.") return # Cannot proceed without espeak # Set up Kokoro TTS if os.path.exists(KOKORO_PATH): import sys if KOKORO_PATH not in sys.path: sys.path.append(KOKORO_PATH) try: from models import build_model from kokoro import generate as generate_tts_internal # Avoid name clash # Make these functions accessible globally if needed globals()['build_model'] = build_model globals()['generate_tts_internal'] = generate_tts_internal device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f"Loading TTS model onto device: {device}") model_file = os.path.join(KOKORO_PATH, 'kokoro-v0_19.pth') if not os.path.exists(model_file): print(f"Error: TTS model file not found at {model_file}. Attempting git lfs pull again...") try: lfs_pull_cmd = ['git', 'lfs', 'pull'] subprocess.run(lfs_pull_cmd, cwd=KOKORO_PATH, check=True, capture_output=True, text=True) if not os.path.exists(model_file): print(f"ERROR: TTS model file STILL not found at {model_file} after lfs pull. TTS disabled.") return except Exception as lfs_pull_err: print(f"Error during git lfs pull: {lfs_pull_err}. TTS disabled.") return TTS_MODEL = build_model(model_file, device) print("TTS model loaded.") # Preload voices for voice_name, voice_id in VOICE_CHOICES.items(): voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt') if os.path.exists(voice_file_path): try: print(f"Loading voice: {voice_id} ({voice_name})") # Load using torch.load, map_location handles device placement VOICEPACKS[voice_id] = torch.load(voice_file_path, map_location=device) except Exception as e: print(f"Warning: Could not load voice {voice_id}: {str(e)}") else: print(f"Info: Voice file {voice_file_path} for '{voice_name}' not found, skipping.") if not VOICEPACKS: print("ERROR: No voicepacks could be loaded. TTS disabled.") return # Ensure default 'af' is loaded if possible, even if not explicitly in choices sometimes if 'af' not in VOICEPACKS: voice_file_path = os.path.join(KOKORO_PATH, 'voices', 'af.pt') if os.path.exists(voice_file_path): try: print(f"Loading fallback default voice: af") VOICEPACKS['af'] = torch.load(voice_file_path, map_location=device) except Exception as e: print(f"Warning: Could not load fallback default voice 'af': {str(e)}") TTS_ENABLED = True print("TTS setup completed successfully.") except ImportError as ie: print(f"ERROR: Importing Kokoro modules failed: {ie}. Check if {KOKORO_PATH} exists and dependencies are met.") except Exception as model_load_err: print(f"ERROR: Loading TTS model or voices failed: {model_load_err}") print(traceback.format_exc()) else: print(f"ERROR: {KOKORO_PATH} directory not found. TTS disabled.") except subprocess.CalledProcessError as spe: print(f"ERROR: A subprocess command failed during TTS setup: {spe}") print(f"Command: {' '.join(spe.cmd)}") if spe.stderr: print(f"Stderr: {spe.stderr.strip()}") print("TTS setup failed.") except Exception as e: print(f"ERROR: An unexpected error occurred during TTS setup: {str(e)}") print(traceback.format_exc()) TTS_ENABLED = False # Start TTS setup in a separate thread import shutil print("Starting TTS setup in background thread...") tts_thread = threading.Thread(target=setup_tts, daemon=True) tts_thread.start() # --- Search and Generation Functions --- @lru_cache(maxsize=128) def get_web_results(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, str]]: """Get web search results using DuckDuckGo with caching.""" print(f"[Web Search] Searching for: '{query}' (max_results={max_results})") try: # Use DDGS context manager for cleanup with DDGS() as ddgs: # Fetch results using ddgs.text() results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y')) # Limit to past year print(f"[Web Search] Found {len(results)} results.") formatted_results = [] for i, result in enumerate(results): formatted_results.append({ "id": i + 1, # Add simple ID for citation "title": result.get("title", "No Title Available"), "snippet": result.get("body", "No Snippet Available"), "url": result.get("href", "#"), }) return formatted_results except Exception as e: print(f"[Web Search] Error: {e}") print(traceback.format_exc()) return [] def format_prompt(query: str, context: List[Dict[str, str]]) -> str: """Format the prompt with web context for the LLM.""" current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") # Format context with IDs for citation context_lines = [] if context: for res in context: context_lines.append(f"[{res['id']}] {res['title']}\n{res['snippet']}") context_str = "\n\n".join(context_lines) else: context_str = "No web context available." # Clear instructions for the model prompt = f"""You are a helpful AI assistant. Your task is to answer the user's query based *only* on the provided web search context. Follow these instructions carefully: 1. Synthesize the information from the context to provide a comprehensive answer. 2. Cite the sources used in your answer using bracket notation with the source ID, like [1], [2], etc. 3. If multiple sources support a point, you can cite them together, e.g., [1][3]. 4. Do *not* add information that is not present in the context. 5. If the context does not contain relevant information to answer the query, clearly state that you cannot answer based on the provided context. 6. Format the answer clearly using markdown. Current Time: {current_time} Web Context: --- {context_str} --- User Query: {query} Answer:""" # print(f"--- Formatted Prompt ---\n{prompt[:1000]}...\n--- End Prompt ---") # Debugging: Print start of prompt return prompt def format_sources(web_results: List[Dict[str, str]]) -> str: """Format sources into HTML for display.""" if not web_results: return "
No sources found for this query.
" sources_html = "
" for res in web_results: title = res.get("title", "Source") url = res.get("url", "#") snippet = res.get("snippet", "") # Basic HTML escaping for snippet and title title_safe = gr. gradio.utils.escape_html(title) snippet_safe = gr. gradio.utils.escape_html(snippet[:150] + ("..." if len(snippet) > 150 else "")) sources_html += f"""
[{res['id']}]
{title_safe}
{snippet_safe}
""" sources_html += "
" return sources_html # --- Core Async Logic --- # NOTE: @spaces.GPU decorator is REMOVED because it's incompatible with async def async def generate_answer(prompt: str) -> str: """Generate answer using the DeepSeek model (Async Wrapper).""" print(f"[LLM Generate] Generating answer for prompt (length {len(prompt)})...") start_time = time.time() try: # Tokenize input - ensure it runs on the correct device implicitly via model.device inputs = tokenizer( prompt, return_tensors="pt", padding=True, truncation=True, max_length=1024, # Model's context window might be larger, adjust if known return_attention_mask=True ).to(model.device) # Use torch.inference_mode() for efficiency with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(model.dtype == torch.float16)): # Run model.generate in a separate thread to avoid blocking asyncio event loop outputs = await asyncio.to_thread( model.generate, input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=MAX_NEW_TOKENS, temperature=TEMPERATURE, top_p=TOP_P, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id, # Explicitly set EOS token do_sample=True, num_return_sequences=1 ) # Decode only the newly generated tokens # output_ids = outputs[0][inputs.input_ids.shape[1]:] # Slice generated part # answer_part = tokenizer.decode(output_ids, skip_special_tokens=True).strip() # Alternative: Decode full output and split (can be less reliable if prompt has "Answer:") full_output = tokenizer.decode(outputs[0], skip_special_tokens=True) answer_marker = "Answer:" marker_index = full_output.rfind(answer_marker) # Use rfind to find the last occurrence if marker_index != -1: answer_part = full_output[marker_index + len(answer_marker):].strip() else: # Fallback: try to remove the prompt text (less reliable) prompt_decoded = tokenizer.decode(inputs.input_ids[0], skip_special_tokens=True) if full_output.startswith(prompt_decoded): answer_part = full_output[len(prompt_decoded):].strip() # Check if the marker is now at the beginning if answer_part.startswith(answer_marker): answer_part = answer_part[len(answer_marker):].strip() else: print("[LLM Generate] Warning: 'Answer:' marker not found and prompt prefix mismatch. Using full output.") answer_part = full_output # Use full output as last resort end_time = time.time() print(f"[LLM Generate] Answer generated successfully in {end_time - start_time:.2f}s. Length: {len(answer_part)}") return answer_part if answer_part else "*Model did not generate a response.*" except Exception as e: print(f"[LLM Generate] Error: {e}") print(traceback.format_exc()) return f"Error generating answer: {str(e)}" # NOTE: @spaces.GPU decorator is REMOVED because it's incompatible with async def async def generate_speech(text: str, voice_id: str = 'af') -> Tuple[int, np.ndarray] | None: """Generate speech from text using Kokoro TTS model (Async Wrapper).""" global TTS_MODEL, TTS_ENABLED, VOICEPACKS if not TTS_ENABLED or TTS_MODEL is None: print("[TTS Generate] Skipping: TTS not enabled or model not loaded.") return None if 'generate_tts_internal' not in globals(): print("[TTS Generate] Skipping: TTS generation function not found.") return None if not text or not text.strip(): print("[TTS Generate] Skipping: Empty text provided.") return None print(f"[TTS Generate] Requesting speech for text (length {len(text)}) with voice '{voice_id}'") start_time = time.time() try: device = TTS_MODEL.device # Ensure voicepack is loaded if voice_id not in VOICEPACKS: print(f"[TTS Generate] Warning: Voice '{voice_id}' not preloaded. Attempting fallback.") # Attempt fallback to default 'af' if available voice_id = 'af' if 'af' not in VOICEPACKS: print("[TTS Generate] Error: Default voice 'af' also not available. Cannot generate audio.") return None print("[TTS Generate] Using default voice 'af'.") # Clean the text (simple cleaning) # Remove markdown citations like [1], [2][3] etc. clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text) # Remove other common markdown artifacts clean_text = clean_text.replace('*', '').replace('#', '').replace('`', '') # Remove excessive whitespace clean_text = ' '.join(clean_text.split()) if not clean_text.strip(): print("[TTS Generate] Skipping: Text is empty after cleaning.") return None # Truncate if too long if len(clean_text) > MAX_TTS_CHARS: print(f"[TTS Generate] Warning: Text too long ({len(clean_text)} chars), truncating to {MAX_TTS_CHARS}.") clean_text = clean_text[:MAX_TTS_CHARS] # Find last punctuation or space for cleaner cut cut_off = max(clean_text.rfind('.'), clean_text.rfind('?'), clean_text.rfind('!'), clean_text.rfind(' ')) if cut_off != -1: clean_text = clean_text[:cut_off+1] clean_text += "..." # Indicate truncation print(f"[TTS Generate] Generating audio for: '{clean_text[:100]}...'") gen_func = globals()['generate_tts_internal'] # Run the blocking TTS generation in the thread pool executor audio_data, _ = await asyncio.get_event_loop().run_in_executor( executor, gen_func, TTS_MODEL, clean_text, VOICEPACKS[voice_id], 'afr' # Language code for Kokoro (check if 'afr' or 'eng' or other is correct for your voices) ) if isinstance(audio_data, torch.Tensor): # Move tensor to CPU before converting to numpy if it's not already audio_np = audio_data.detach().cpu().numpy() elif isinstance(audio_data, np.ndarray): audio_np = audio_data else: print("[TTS Generate] Warning: Unexpected audio data type received.") return None end_time = time.time() print(f"[TTS Generate] Audio generated successfully in {end_time - start_time:.2f}s. Shape: {audio_np.shape}") # Ensure it's 1D array if audio_np.ndim > 1: audio_np = audio_np.flatten() return (TTS_SAMPLE_RATE, audio_np) except Exception as e: print(f"[TTS Generate] Error: {str(e)}") print(traceback.format_exc()) return None # Helper to get voice ID from display name def get_voice_id(voice_display_name: str) -> str: """Maps the user-friendly voice name to the internal voice ID.""" return VOICE_CHOICES.get(voice_display_name, 'af') # Default to 'af' if not found # --- Main Processing Logic (Async Generator) --- import re # Import regex for cleaning async def process_query_async(query: str, history: List[List[str]], selected_voice_display_name: str): """Asynchronously process user query: search -> generate answer -> generate speech""" print(f"\n--- New Query Processing ---") print(f"Query: '{query}', Voice: '{selected_voice_display_name}'") if not query or not query.strip(): print("Empty query received.") yield ( "Please enter a query.", "", gr.Button(value="Search", interactive=True), history, None ) return if history is None: history = [] # Append user query to history immediately for display current_history = history + [[query, None]] # Placeholder for assistant response # 1. Initial state: Searching yield ( "*Searching the web...*", "
Searching the web...
", # Added span for CSS animation gr.Button(value="Searching...", interactive=False), # Disable button current_history, None ) # 2. Perform Web Search (non-blocking) loop = asyncio.get_event_loop() web_results = await loop.run_in_executor(executor, get_web_results, query) sources_html = format_sources(web_results) # Update state: Analyzing results yield ( "*Analyzing search results and generating answer...*", sources_html, gr.Button(value="Generating...", interactive=False), current_history, # History still shows user query, assistant response is pending None ) # 3. Generate Answer (non-blocking, potentially on GPU) prompt = format_prompt(query, web_results) final_answer = await generate_answer(prompt) # This is already async # Update history with the final answer BEFORE generating audio current_history[-1][1] = final_answer # Update state: Answer generated, preparing audio yield ( final_answer, sources_html, gr.Button(value="Audio...", interactive=False), current_history, # Now history includes the answer None ) # 4. Generate Speech (non-blocking, potentially on GPU) audio = None tts_message = "" if not tts_thread.is_alive() and not TTS_ENABLED: print("[TTS Status] TTS setup failed or is disabled.") tts_message = "\n\n*(TTS is disabled or failed to initialize)*" elif tts_thread.is_alive(): print("[TTS Status] TTS is still initializing in the background.") tts_message = "\n\n*(TTS is still initializing, audio may be delayed or unavailable)*" elif TTS_ENABLED: voice_id = get_voice_id(selected_voice_display_name) # Only generate audio if the answer generation was successful if not final_answer.startswith("Error"): audio = await generate_speech(final_answer, voice_id) # This is already async if audio is None: print(f"[TTS Status] Audio generation failed for voice '{voice_id}'.") tts_message = f"\n\n*(Audio generation failed)*" else: print("[TTS Status] Audio generated successfully.") else: print("[TTS Status] Skipping audio generation due to answer error.") tts_message = "\n\n*(Audio skipped due to answer generation error)*" # 5. Final state: Show everything print("--- Query Processing Complete ---") yield ( final_answer + tts_message, sources_html, gr.Button(value="Search", interactive=True), # Re-enable button current_history, # Final history state audio ) # --- Gradio Interface --- # (CSS remains the same as your previous version) css = """ /* ... [Your existing refined CSS] ... */ .gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; } #header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); } #header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); } #header h3 { color: #a8a9ab; } .search-container { background: #ffffff; border: 1px solid #e0e0e0; border-radius: 12px; box-shadow: 0 4px 16px rgba(0,0,0,0.05); padding: 1.5rem; margin-bottom: 1.5rem; } .search-box { padding: 0; margin-bottom: 1rem; display: flex; align-items: center; } .search-box .gradio-textbox { border-radius: 8px 0 0 8px !important; height: 44px !important; flex-grow: 1; } .search-box .gradio-dropdown { border-radius: 0 !important; margin-left: -1px; margin-right: -1px; height: 44px !important; width: 180px; flex-shrink: 0; } .search-box .gradio-button { border-radius: 0 8px 8px 0 !important; height: 44px !important; flex-shrink: 0; } .search-box input[type="text"] { background: #f7f7f8 !important; border: 1px solid #d1d5db !important; color: #1f2937 !important; transition: all 0.3s ease; height: 100% !important; padding: 0 12px !important;} .search-box input[type="text"]:focus { border-color: #2563eb !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; background: white !important; z-index: 1; } .search-box input[type="text"]::placeholder { color: #9ca3af !important; } .search-box button { background: #2563eb !important; border: none !important; color: white !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; transition: all 0.3s ease !important; height: 100% !important; } .search-box button:hover { background: #1d4ed8 !important; } .search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; } .results-container { background: transparent; padding: 0; margin-top: 1.5rem; } .answer-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; color: #1f2937; margin-bottom: 1.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); } .answer-box p { color: #374151; line-height: 1.7; } .answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; } .sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; } .sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; } .sources-container { margin-top: 0; } .source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; transition: background-color 0.2s; } .source-item:last-child { border-bottom: none; } /* .source-item:hover { background-color: #f9fafb; } */ .source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;} .source-content { flex: 1; min-width: 0;} /* Allow content to shrink */ .source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;} .source-title:hover { color: #1d4ed8; text-decoration: underline; } .source-date { color: #6b7280; font-size: 0.8em; margin-left: 8px; } .source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; } .chat-history { max-height: 400px; overflow-y: auto; padding: 1rem; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; margin-top: 1rem; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; } .chat-history::-webkit-scrollbar { width: 6px; } .chat-history::-webkit-scrollbar-track { background: #f9fafb; } .chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; } .examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; } .examples-container .gradio-examples { gap: 8px !important; } /* Target examples component */ .examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 0 !important; font-size: 0.9em !important; padding: 6px 12px !important; } .examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; } .markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; } .markdown-content h1, .markdown-content h2, .markdown-content h3 { color: #111827 !important; margin-top: 1.2em !important; margin-bottom: 0.6em !important; font-weight: 600; } .markdown-content h1 { font-size: 1.6em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em; } .markdown-content h2 { font-size: 1.4em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em;} .markdown-content h3 { font-size: 1.2em !important; } .markdown-content a { color: #2563eb !important; text-decoration: none !important; transition: all 0.2s; } .markdown-content a:hover { color: #1d4ed8 !important; text-decoration: underline !important; } .markdown-content code { background: #f3f4f6 !important; padding: 2px 6px !important; border-radius: 4px !important; font-family: monospace !important; color: #4b5563; font-size: 0.9em; } .markdown-content pre { background: #f3f4f6 !important; padding: 12px !important; border-radius: 8px !important; overflow-x: auto !important; border: 1px solid #e5e7eb;} .markdown-content pre code { background: transparent !important; padding: 0 !important; border: none !important; font-size: 0.9em;} .markdown-content blockquote { border-left: 4px solid #d1d5db !important; padding-left: 1em !important; margin-left: 0 !important; color: #6b7280 !important; } .markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; } .markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;} .markdown-content th { background: #f9fafb !important; font-weight: 600; } .accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; } .accordion > .label-wrap { padding: 10px 15px !important; } /* Style accordion header */ .voice-selector { margin: 0; padding: 0; height: 100%; } .voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;} .voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; } .voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; z-index: 1; position: relative;} .audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;} .audio-player audio { width: 100% !important; } .searching, .error { padding: 1rem; border-radius: 8px; text-align: center; margin: 1rem 0; border: 1px dashed; } .searching { background: #eff6ff; color: #3b82f6; border-color: #bfdbfe; } .error { background: #fef2f2; color: #ef4444; border-color: #fecaca; } .no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;} @keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } } .searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; } /* Dark Mode Styles */ .dark .gradio-container { background-color: #111827 !important; } .dark #header { background: linear-gradient(135deg, #1f2937, #374151); } .dark #header h3 { color: #9ca3af; } .dark .search-container { background: #1f2937; border-color: #374151; } .dark .search-box input[type="text"] { background: #374151 !important; border-color: #4b5563 !important; color: #e5e7eb !important; } .dark .search-box input[type="text"]:focus { border-color: #3b82f6 !important; background: #4b5563 !important; box-shadow: 0 0 0 2px rgba(59, 130, 246, 0.3) !important; } .dark .search-box input[type="text"]::placeholder { color: #9ca3af !important; } .dark .search-box button { background: #3b82f6 !important; } .dark .search-box button:hover { background: #2563eb !important; } .dark .search-box button:disabled { background: #4b5563 !important; } .dark .answer-box { background: #1f2937; border-color: #374151; color: #e5e7eb; } .dark .answer-box p { color: #d1d5db; } .dark .answer-box code { background: #374151; color: #9ca3af; } .dark .sources-box { background: #1f2937; border-color: #374151; } .dark .sources-box h3 { color: #f9fafb; } .dark .source-item { border-bottom-color: #374151; } .dark .source-item:hover { background-color: #374151; } .dark .source-number { color: #9ca3af; } .dark .source-title { color: #60a5fa; } .dark .source-title:hover { color: #93c5fd; } .dark .source-snippet { color: #d1d5db; } .dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; color: #d1d5db;} /* Ensure chat text is visible */ .dark .chat-history::-webkit-scrollbar-track { background: #374151; } .dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; } .dark .examples-container { background: #374151; border-color: #4b5563; } .dark .examples-container button { background: #1f2937 !important; border-color: #4b5563 !important; color: #d1d5db !important; } .dark .examples-container button:hover { background: #4b5563 !important; border-color: #6b7280 !important; } .dark .markdown-content { color: #d1d5db !important; } .dark .markdown-content h1, .dark .markdown-content h2, .dark .markdown-content h3 { color: #f9fafb !important; border-bottom-color: #4b5563; } .dark .markdown-content a { color: #60a5fa !important; } .dark .markdown-content a:hover { color: #93c5fd !important; } .dark .markdown-content code { background: #374151 !important; color: #9ca3af; } .dark .markdown-content pre { background: #374151 !important; border-color: #4b5563;} .dark .markdown-content pre code { background: transparent !important; } .dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; } .dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; } .dark .markdown-content th { background: #374151 !important; } .dark .accordion { background: #374151 !important; border-color: #4b5563 !important; } .dark .accordion > .label-wrap { color: #d1d5db !important; } /* Accordion label color */ .dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;} .dark .voice-selector select:focus { border-color: #3b82f6 !important; } .dark .audio-player { background: #374151 !important; border-color: #4b5563;} .dark .audio-player audio::-webkit-media-controls-panel { background-color: #374151; } /* Style audio player controls */ .dark .audio-player audio::-webkit-media-controls-play-button { color: #d1d5db; } .dark .audio-player audio::-webkit-media-controls-current-time-display { color: #9ca3af; } .dark .audio-player audio::-webkit-media-controls-time-remaining-display { color: #9ca3af; } .dark .searching { background: #1e3a8a; color: #93c5fd; border-color: #3b82f6; } .dark .error { background: #7f1d1d; color: #fca5a5; border-color: #ef4444; } .dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;} """ with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo: # chat_history state persists across interactions for a single user session chat_history = gr.State([]) with gr.Column(): # Main container for vertical layout # Header Section with gr.Column(elem_id="header"): gr.Markdown("# πŸ” AI Search Assistant") gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice") # Search Input and Controls Section with gr.Column(elem_classes="search-container"): with gr.Row(elem_classes="search-box", equal_height=False): # Use Row for horizontal elements search_input = gr.Textbox( label="", placeholder="Ask anything...", scale=5, # Takes more horizontal space container=False, # Important for direct styling within Row elem_classes="gradio-textbox" ) voice_select = gr.Dropdown( choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], # Default voice display name label="", # Visually hidden label scale=1, # Takes less space min_width=180, # Fixed width for dropdown container=False, # Important elem_classes="voice-selector gradio-dropdown" ) search_btn = gr.Button( "Search", variant="primary", scale=0, # Minimal width needed for text min_width=100, elem_classes="gradio-button" ) # Results Display Section (using Columns for side-by-side layout) with gr.Row(elem_classes="results-container", equal_height=False): # Left Column: Answer and Chat History with gr.Column(scale=3): # Takes 3 parts of the width with gr.Column(elem_classes="answer-box"): answer_output = gr.Markdown(value="*Your answer will appear here...*", elem_classes="markdown-content") # Audio player below the answer text audio_output = gr.Audio( label="Voice Response", type="numpy", # Expects (rate, numpy_array) tuple autoplay=False, # Don't autoplay by default show_label=False, # Hide the "Voice Response" label visually elem_classes="audio-player" ) with gr.Accordion("Chat History", open=False, elem_classes="accordion"): chat_history_display = gr.Chatbot( label="Conversation", bubble_full_width=True, # Bubbles take full width height=400, elem_classes="chat-history" ) # Right Column: Sources with gr.Column(scale=2): # Takes 2 parts of the width with gr.Column(elem_classes="sources-box"): gr.Markdown("### Sources") sources_output = gr.HTML(value="
Sources will appear here after searching.
") # Example Prompts Section with gr.Row(elem_classes="examples-container"): gr.Examples( examples=[ "Latest news about renewable energy", "Explain the concept of Large Language Models (LLMs)", "What are the symptoms and prevention tips for the flu?", "Compare Python and JavaScript for web development", "Summarize the main points of the Paris Agreement on climate change", ], inputs=search_input, # Clicking example populates this input label="Try these examples:", elem_classes="gradio-examples" # Add class for potential styling ) # --- Event Handling --- async def handle_interaction(query, history, voice_display_name): """Wrapper to handle the async generator and update outputs.""" print(f"[Interaction] Handling query: '{query}'") outputs = { # Dictionary to hold the latest state of outputs "answer": "...", "sources": "...", "button": gr.Button(value="Search", interactive=True), "history": history, "audio": None } try: # Iterate through the updates yielded by the async generator async for update_tuple in process_query_async(query, history, voice_display_name): # Unpack the tuple ans_out, src_out, btn_state, hist_display, aud_out = update_tuple # Update the outputs dictionary outputs["answer"] = ans_out outputs["sources"] = src_out outputs["button"] = btn_state # Can be a gr.Button update dict or object outputs["history"] = hist_display outputs["audio"] = aud_out # Yield the current state of all outputs yield outputs["answer"], outputs["sources"], outputs["button"], outputs["history"], outputs["audio"] except Exception as e: print(f"[Interaction] Error: {e}") print(traceback.format_exc()) error_message = f"An unexpected error occurred: {e}" # Provide a final error state update final_error_history = history + [[query, f"*Error: {error_message}*"]] if query else history yield ( error_message, "
Error processing request. Please check logs or try again.
", gr.Button(value="Search", interactive=True), # Re-enable button on error final_error_history, None ) # Connect the handle_interaction function to the button click and input submit events outputs_list = [answer_output, sources_output, search_btn, chat_history_display, audio_output] inputs_list = [search_input, chat_history, voice_select] # Pass the dropdown component itself search_btn.click( fn=handle_interaction, inputs=inputs_list, outputs=outputs_list ) search_input.submit( fn=handle_interaction, inputs=inputs_list, outputs=outputs_list ) if __name__ == "__main__": print("Starting Gradio application...") # Launch the app with queuing enabled for handling multiple users demo.queue(max_size=20).launch( debug=True, # Enable Gradio debug mode for more logs share=True, # Create a public link (useful for Spaces) # server_name="0.0.0.0" # Bind to all interfaces if running locally and need external access )