Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -18,9 +18,7 @@ try:
|
|
18 |
|
19 |
# Try installing espeak with proper package manager commands
|
20 |
try:
|
21 |
-
# Update package list first
|
22 |
subprocess.run(['apt-get', 'update'], check=True)
|
23 |
-
# Try installing espeak first (more widely available)
|
24 |
subprocess.run(['apt-get', 'install', '-y', 'espeak'], check=True)
|
25 |
except subprocess.CalledProcessError:
|
26 |
print("Warning: Could not install espeak. Attempting espeak-ng...")
|
@@ -33,7 +31,6 @@ except Exception as e:
|
|
33 |
print(f"Warning: Initial setup error: {str(e)}")
|
34 |
print("Continuing with limited functionality...")
|
35 |
|
36 |
-
|
37 |
# --- Initialization (Do this ONCE) ---
|
38 |
|
39 |
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
@@ -66,7 +63,7 @@ try:
|
|
66 |
from models import build_model # type: ignore
|
67 |
from kokoro import generate # type: ignore
|
68 |
|
69 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
70 |
TTS_MODEL = build_model('Kokoro-82M/kokoro-v0_19.pth', device)
|
71 |
|
72 |
# Load default voice
|
@@ -83,8 +80,6 @@ except Exception as e:
|
|
83 |
print(f"Warning: Could not initialize Kokoro TTS: {str(e)}")
|
84 |
TTS_ENABLED = False
|
85 |
|
86 |
-
|
87 |
-
|
88 |
def get_web_results(query: str, max_results: int = 5) -> List[Dict[str, str]]:
|
89 |
"""Get web search results using DuckDuckGo"""
|
90 |
try:
|
@@ -100,27 +95,19 @@ def get_web_results(query: str, max_results: int = 5) -> List[Dict[str, str]]:
|
|
100 |
print(f"Error in web search: {e}")
|
101 |
return []
|
102 |
|
103 |
-
|
104 |
def format_prompt(query: str, context: List[Dict[str, str]]) -> str:
|
105 |
"""Format the prompt with web context"""
|
106 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
107 |
context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for res in context])
|
108 |
return f"""You are an intelligent search assistant. Answer the user's query using the provided web context.
|
109 |
-
|
110 |
Current Time: {current_time}
|
111 |
-
|
112 |
Important: For election-related queries, please distinguish clearly between different election years and types (presidential vs. non-presidential). Only use information from the provided web context.
|
113 |
-
|
114 |
Query: {query}
|
115 |
-
|
116 |
Web Context:
|
117 |
{context_lines}
|
118 |
-
|
119 |
Provide a detailed answer in markdown format. Include relevant information from sources and cite them using [1], [2], etc. If the query is about elections, clearly specify which year and type of election you're discussing.
|
120 |
-
|
121 |
Answer:"""
|
122 |
|
123 |
-
|
124 |
def format_sources(web_results: List[Dict[str, str]]) -> str:
|
125 |
"""Format sources with more details"""
|
126 |
if not web_results:
|
@@ -143,7 +130,6 @@ def format_sources(web_results: List[Dict[str, str]]) -> str:
|
|
143 |
sources_html += "</div>"
|
144 |
return sources_html
|
145 |
|
146 |
-
|
147 |
@spaces.GPU(duration=30)
|
148 |
def generate_answer(prompt: str) -> str:
|
149 |
"""Generate answer using the DeepSeek model"""
|
@@ -168,47 +154,59 @@ def generate_answer(prompt: str) -> str:
|
|
168 |
)
|
169 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
170 |
|
171 |
-
|
172 |
-
|
173 |
@spaces.GPU(duration=30)
|
174 |
-
def generate_speech_with_gpu(text: str, voice_name: str = 'af', tts_model
|
175 |
"""Generate speech from text using Kokoro TTS model."""
|
176 |
if not TTS_ENABLED or tts_model is None:
|
177 |
print("TTS is not enabled or model is not loaded.")
|
178 |
return None
|
179 |
|
180 |
try:
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
# Clean the text
|
187 |
clean_text = ' '.join([line for line in text.split('\n') if not line.startswith('#')])
|
188 |
clean_text = clean_text.replace('[', '').replace(']', '').replace('*', '')
|
189 |
|
190 |
-
# Split long text into chunks
|
191 |
max_chars = 1000
|
192 |
chunks = []
|
193 |
if len(clean_text) > max_chars:
|
194 |
sentences = clean_text.split('.')
|
195 |
current_chunk = ""
|
196 |
for sentence in sentences:
|
197 |
-
if len(current_chunk) + len(sentence) + 1 < max_chars:
|
198 |
current_chunk += sentence + "."
|
199 |
else:
|
200 |
chunks.append(current_chunk.strip())
|
201 |
current_chunk = sentence + "."
|
202 |
-
if current_chunk:
|
203 |
chunks.append(current_chunk.strip())
|
204 |
else:
|
205 |
chunks = [clean_text]
|
206 |
|
207 |
-
|
208 |
# Generate audio for each chunk
|
209 |
audio_chunks = []
|
210 |
for chunk in chunks:
|
211 |
-
if chunk.strip():
|
212 |
chunk_audio, _ = generate(tts_model, chunk, voicepack, lang='a')
|
213 |
if isinstance(chunk_audio, torch.Tensor):
|
214 |
chunk_audio = chunk_audio.cpu().numpy()
|
@@ -223,12 +221,8 @@ def generate_speech_with_gpu(text: str, voice_name: str = 'af', tts_model = TTS_
|
|
223 |
|
224 |
except Exception as e:
|
225 |
print(f"Error generating speech: {str(e)}")
|
226 |
-
import traceback
|
227 |
-
traceback.print_exc()
|
228 |
return None
|
229 |
|
230 |
-
|
231 |
-
|
232 |
def process_query(query: str, history: List[List[str]], selected_voice: str = 'af') -> Dict[str, Any]:
|
233 |
"""Process user query with streaming effect"""
|
234 |
try:
|
@@ -242,11 +236,11 @@ def process_query(query: str, history: List[List[str]], selected_voice: str = 'a
|
|
242 |
current_history = history + [[query, "*Searching...*"]]
|
243 |
|
244 |
yield {
|
245 |
-
answer_output: gr.Markdown("*Searching & Thinking...*"),
|
246 |
-
sources_output: gr.HTML(sources_html),
|
247 |
-
search_btn: gr.Button("Searching...", interactive=False),
|
248 |
-
chat_history_display: current_history,
|
249 |
-
audio_output: None
|
250 |
}
|
251 |
|
252 |
# Generate answer
|
@@ -254,47 +248,47 @@ def process_query(query: str, history: List[List[str]], selected_voice: str = 'a
|
|
254 |
answer = generate_answer(prompt)
|
255 |
final_answer = answer.split("Answer:")[-1].strip()
|
256 |
|
257 |
-
# Update history
|
258 |
updated_history = history + [[query, final_answer]]
|
259 |
|
260 |
-
|
261 |
# Generate speech from the answer (only if enabled)
|
262 |
if TTS_ENABLED:
|
263 |
-
yield {
|
264 |
-
answer_output: gr.Markdown(final_answer),
|
265 |
-
sources_output: gr.HTML(sources_html),
|
266 |
-
search_btn: gr.Button("Generating audio...", interactive=False),
|
267 |
-
chat_history_display: updated_history,
|
268 |
-
audio_output: None
|
269 |
}
|
270 |
try:
|
271 |
audio = generate_speech_with_gpu(final_answer, selected_voice)
|
|
|
|
|
272 |
except Exception as e:
|
273 |
-
|
274 |
audio = None
|
275 |
else:
|
|
|
276 |
audio = None
|
277 |
|
278 |
-
|
279 |
-
|
280 |
yield {
|
281 |
-
answer_output: gr.Markdown(final_answer),
|
282 |
-
sources_output: gr.HTML(sources_html),
|
283 |
-
search_btn: gr.Button("Search", interactive=True),
|
284 |
-
chat_history_display: updated_history,
|
285 |
-
audio_output: audio if audio is not None else gr.Audio(value=None)
|
286 |
}
|
287 |
|
288 |
except Exception as e:
|
289 |
error_message = str(e)
|
290 |
if "GPU quota" in error_message:
|
291 |
-
error_message = "⚠️ GPU quota exceeded.
|
292 |
yield {
|
293 |
-
answer_output: gr.Markdown(f"Error: {error_message}"),
|
294 |
-
sources_output: gr.HTML(sources_html),
|
295 |
-
search_btn: gr.Button("Search", interactive=True),
|
296 |
-
chat_history_display: history + [[query, f"*Error: {error_message}*"]],
|
297 |
-
audio_output: None
|
298 |
}
|
299 |
|
300 |
# Update the CSS for better contrast and readability
|
@@ -303,7 +297,6 @@ css = """
|
|
303 |
max-width: 1200px !important;
|
304 |
background-color: #f7f7f8 !important;
|
305 |
}
|
306 |
-
|
307 |
#header {
|
308 |
text-align: center;
|
309 |
margin-bottom: 2rem;
|
@@ -312,17 +305,14 @@ css = """
|
|
312 |
border-radius: 12px;
|
313 |
color: white;
|
314 |
}
|
315 |
-
|
316 |
#header h1 {
|
317 |
color: white;
|
318 |
font-size: 2.5rem;
|
319 |
margin-bottom: 0.5rem;
|
320 |
}
|
321 |
-
|
322 |
#header h3 {
|
323 |
color: #a8a9ab;
|
324 |
}
|
325 |
-
|
326 |
.search-container {
|
327 |
background: #1a1b1e;
|
328 |
border-radius: 12px;
|
@@ -330,40 +320,31 @@ css = """
|
|
330 |
padding: 1rem;
|
331 |
margin-bottom: 1rem;
|
332 |
}
|
333 |
-
|
334 |
.search-box {
|
335 |
padding: 1rem;
|
336 |
background: #2c2d30;
|
337 |
border-radius: 8px;
|
338 |
margin-bottom: 1rem;
|
339 |
}
|
340 |
-
|
341 |
-
/* Style the input textbox */
|
342 |
.search-box input[type="text"] {
|
343 |
background: #3a3b3e !important;
|
344 |
border: 1px solid #4a4b4e !important;
|
345 |
color: white !important;
|
346 |
border-radius: 8px !important;
|
347 |
}
|
348 |
-
|
349 |
.search-box input[type="text"]::placeholder {
|
350 |
color: #a8a9ab !important;
|
351 |
}
|
352 |
-
|
353 |
-
/* Style the search button */
|
354 |
.search-box button {
|
355 |
background: #2563eb !important;
|
356 |
border: none !important;
|
357 |
}
|
358 |
-
|
359 |
-
/* Results area styling */
|
360 |
.results-container {
|
361 |
background: #2c2d30;
|
362 |
border-radius: 8px;
|
363 |
padding: 1rem;
|
364 |
margin-top: 1rem;
|
365 |
}
|
366 |
-
|
367 |
.answer-box {
|
368 |
background: #3a3b3e;
|
369 |
border-radius: 8px;
|
@@ -371,19 +352,16 @@ css = """
|
|
371 |
color: white;
|
372 |
margin-bottom: 1rem;
|
373 |
}
|
374 |
-
|
375 |
.answer-box p {
|
376 |
color: #e5e7eb;
|
377 |
line-height: 1.6;
|
378 |
}
|
379 |
-
|
380 |
.sources-container {
|
381 |
margin-top: 1rem;
|
382 |
background: #2c2d30;
|
383 |
border-radius: 8px;
|
384 |
padding: 1rem;
|
385 |
}
|
386 |
-
|
387 |
.source-item {
|
388 |
display: flex;
|
389 |
padding: 12px;
|
@@ -392,21 +370,17 @@ css = """
|
|
392 |
border-radius: 8px;
|
393 |
transition: all 0.2s;
|
394 |
}
|
395 |
-
|
396 |
.source-item:hover {
|
397 |
background: #4a4b4e;
|
398 |
}
|
399 |
-
|
400 |
.source-number {
|
401 |
font-weight: bold;
|
402 |
margin-right: 12px;
|
403 |
color: #60a5fa;
|
404 |
}
|
405 |
-
|
406 |
.source-content {
|
407 |
flex: 1;
|
408 |
}
|
409 |
-
|
410 |
.source-title {
|
411 |
color: #60a5fa;
|
412 |
font-weight: 500;
|
@@ -414,19 +388,16 @@ css = """
|
|
414 |
display: block;
|
415 |
margin-bottom: 4px;
|
416 |
}
|
417 |
-
|
418 |
.source-date {
|
419 |
color: #a8a9ab;
|
420 |
font-size: 0.9em;
|
421 |
margin-left: 8px;
|
422 |
}
|
423 |
-
|
424 |
.source-snippet {
|
425 |
color: #e5e7eb;
|
426 |
font-size: 0.9em;
|
427 |
line-height: 1.4;
|
428 |
}
|
429 |
-
|
430 |
.chat-history {
|
431 |
max-height: 400px;
|
432 |
overflow-y: auto;
|
@@ -435,47 +406,37 @@ css = """
|
|
435 |
border-radius: 8px;
|
436 |
margin-top: 1rem;
|
437 |
}
|
438 |
-
|
439 |
.examples-container {
|
440 |
background: #2c2d30;
|
441 |
border-radius: 8px;
|
442 |
padding: 1rem;
|
443 |
margin-top: 1rem;
|
444 |
}
|
445 |
-
|
446 |
.examples-container button {
|
447 |
background: #3a3b3e !important;
|
448 |
border: 1px solid #4a4b4e !important;
|
449 |
color: #e5e7eb !important;
|
450 |
}
|
451 |
-
|
452 |
-
/* Markdown content styling */
|
453 |
.markdown-content {
|
454 |
color: #e5e7eb !important;
|
455 |
}
|
456 |
-
|
457 |
.markdown-content h1, .markdown-content h2, .markdown-content h3 {
|
458 |
color: white !important;
|
459 |
}
|
460 |
-
|
461 |
.markdown-content a {
|
462 |
color: #60a5fa !important;
|
463 |
}
|
464 |
-
|
465 |
-
/* Accordion styling */
|
466 |
.accordion {
|
467 |
background: #2c2d30 !important;
|
468 |
border-radius: 8px !important;
|
469 |
margin-top: 1rem !important;
|
470 |
}
|
471 |
-
|
472 |
.voice-selector {
|
473 |
margin-top: 1rem;
|
474 |
background: #2c2d30;
|
475 |
border-radius: 8px;
|
476 |
padding: 0.5rem;
|
477 |
}
|
478 |
-
|
479 |
.voice-selector select {
|
480 |
background: #3a3b3e !important;
|
481 |
color: white !important;
|
@@ -547,4 +508,4 @@ with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
|
|
547 |
)
|
548 |
|
549 |
if __name__ == "__main__":
|
550 |
-
demo.launch(share=True)
|
|
|
18 |
|
19 |
# Try installing espeak with proper package manager commands
|
20 |
try:
|
|
|
21 |
subprocess.run(['apt-get', 'update'], check=True)
|
|
|
22 |
subprocess.run(['apt-get', 'install', '-y', 'espeak'], check=True)
|
23 |
except subprocess.CalledProcessError:
|
24 |
print("Warning: Could not install espeak. Attempting espeak-ng...")
|
|
|
31 |
print(f"Warning: Initial setup error: {str(e)}")
|
32 |
print("Continuing with limited functionality...")
|
33 |
|
|
|
34 |
# --- Initialization (Do this ONCE) ---
|
35 |
|
36 |
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
|
|
63 |
from models import build_model # type: ignore
|
64 |
from kokoro import generate # type: ignore
|
65 |
|
66 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
67 |
TTS_MODEL = build_model('Kokoro-82M/kokoro-v0_19.pth', device)
|
68 |
|
69 |
# Load default voice
|
|
|
80 |
print(f"Warning: Could not initialize Kokoro TTS: {str(e)}")
|
81 |
TTS_ENABLED = False
|
82 |
|
|
|
|
|
83 |
def get_web_results(query: str, max_results: int = 5) -> List[Dict[str, str]]:
|
84 |
"""Get web search results using DuckDuckGo"""
|
85 |
try:
|
|
|
95 |
print(f"Error in web search: {e}")
|
96 |
return []
|
97 |
|
|
|
98 |
def format_prompt(query: str, context: List[Dict[str, str]]) -> str:
|
99 |
"""Format the prompt with web context"""
|
100 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
101 |
context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for res in context])
|
102 |
return f"""You are an intelligent search assistant. Answer the user's query using the provided web context.
|
|
|
103 |
Current Time: {current_time}
|
|
|
104 |
Important: For election-related queries, please distinguish clearly between different election years and types (presidential vs. non-presidential). Only use information from the provided web context.
|
|
|
105 |
Query: {query}
|
|
|
106 |
Web Context:
|
107 |
{context_lines}
|
|
|
108 |
Provide a detailed answer in markdown format. Include relevant information from sources and cite them using [1], [2], etc. If the query is about elections, clearly specify which year and type of election you're discussing.
|
|
|
109 |
Answer:"""
|
110 |
|
|
|
111 |
def format_sources(web_results: List[Dict[str, str]]) -> str:
|
112 |
"""Format sources with more details"""
|
113 |
if not web_results:
|
|
|
130 |
sources_html += "</div>"
|
131 |
return sources_html
|
132 |
|
|
|
133 |
@spaces.GPU(duration=30)
|
134 |
def generate_answer(prompt: str) -> str:
|
135 |
"""Generate answer using the DeepSeek model"""
|
|
|
154 |
)
|
155 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
156 |
|
|
|
|
|
157 |
@spaces.GPU(duration=30)
|
158 |
+
def generate_speech_with_gpu(text: str, voice_name: str = 'af', tts_model=TTS_MODEL, voicepack=VOICEPACK) -> Tuple[int, np.ndarray] | None:
|
159 |
"""Generate speech from text using Kokoro TTS model."""
|
160 |
if not TTS_ENABLED or tts_model is None:
|
161 |
print("TTS is not enabled or model is not loaded.")
|
162 |
return None
|
163 |
|
164 |
try:
|
165 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
166 |
+
|
167 |
+
# Handle voicepack loading
|
168 |
+
voice_file = f'Kokoro-82M/voices/{voice_name}.pt'
|
169 |
+
if voice_name == 'af' and voicepack is not None:
|
170 |
+
# Use the pre-loaded default voicepack
|
171 |
+
pass
|
172 |
+
elif os.path.exists(voice_file):
|
173 |
+
# Load the selected voicepack if it exists
|
174 |
+
voicepack = torch.load(voice_file, map_location=device, weights_only=True)
|
175 |
+
else:
|
176 |
+
# Fall back to default 'af' if selected voicepack is missing
|
177 |
+
print(f"Voicepack {voice_name}.pt not found. Falling back to default 'af'.")
|
178 |
+
voice_file = 'Kokoro-82M/voices/af.pt'
|
179 |
+
if os.path.exists(voice_file):
|
180 |
+
voicepack = torch.load(voice_file, map_location=device, weights_only=True)
|
181 |
+
else:
|
182 |
+
print("Default voicepack 'af.pt' not found. Cannot generate audio.")
|
183 |
+
return None
|
184 |
|
185 |
# Clean the text
|
186 |
clean_text = ' '.join([line for line in text.split('\n') if not line.startswith('#')])
|
187 |
clean_text = clean_text.replace('[', '').replace(']', '').replace('*', '')
|
188 |
|
189 |
+
# Split long text into chunks
|
190 |
max_chars = 1000
|
191 |
chunks = []
|
192 |
if len(clean_text) > max_chars:
|
193 |
sentences = clean_text.split('.')
|
194 |
current_chunk = ""
|
195 |
for sentence in sentences:
|
196 |
+
if len(current_chunk) + len(sentence) + 1 < max_chars:
|
197 |
current_chunk += sentence + "."
|
198 |
else:
|
199 |
chunks.append(current_chunk.strip())
|
200 |
current_chunk = sentence + "."
|
201 |
+
if current_chunk:
|
202 |
chunks.append(current_chunk.strip())
|
203 |
else:
|
204 |
chunks = [clean_text]
|
205 |
|
|
|
206 |
# Generate audio for each chunk
|
207 |
audio_chunks = []
|
208 |
for chunk in chunks:
|
209 |
+
if chunk.strip():
|
210 |
chunk_audio, _ = generate(tts_model, chunk, voicepack, lang='a')
|
211 |
if isinstance(chunk_audio, torch.Tensor):
|
212 |
chunk_audio = chunk_audio.cpu().numpy()
|
|
|
221 |
|
222 |
except Exception as e:
|
223 |
print(f"Error generating speech: {str(e)}")
|
|
|
|
|
224 |
return None
|
225 |
|
|
|
|
|
226 |
def process_query(query: str, history: List[List[str]], selected_voice: str = 'af') -> Dict[str, Any]:
|
227 |
"""Process user query with streaming effect"""
|
228 |
try:
|
|
|
236 |
current_history = history + [[query, "*Searching...*"]]
|
237 |
|
238 |
yield {
|
239 |
+
'answer_output': gr.Markdown("*Searching & Thinking...*"),
|
240 |
+
'sources_output': gr.HTML(sources_html),
|
241 |
+
'search_btn': gr.Button("Searching...", interactive=False),
|
242 |
+
'chat_history_display': current_history,
|
243 |
+
'audio_output': None
|
244 |
}
|
245 |
|
246 |
# Generate answer
|
|
|
248 |
answer = generate_answer(prompt)
|
249 |
final_answer = answer.split("Answer:")[-1].strip()
|
250 |
|
251 |
+
# Update history before TTS
|
252 |
updated_history = history + [[query, final_answer]]
|
253 |
|
|
|
254 |
# Generate speech from the answer (only if enabled)
|
255 |
if TTS_ENABLED:
|
256 |
+
yield {
|
257 |
+
'answer_output': gr.Markdown(final_answer),
|
258 |
+
'sources_output': gr.HTML(sources_html),
|
259 |
+
'search_btn': gr.Button("Generating audio...", interactive=False),
|
260 |
+
'chat_history_display': updated_history,
|
261 |
+
'audio_output': None
|
262 |
}
|
263 |
try:
|
264 |
audio = generate_speech_with_gpu(final_answer, selected_voice)
|
265 |
+
if audio is None:
|
266 |
+
final_answer += "\n\n*Audio generation failed. The voicepack may be missing or incompatible.*"
|
267 |
except Exception as e:
|
268 |
+
final_answer += f"\n\n*Error generating audio: {str(e)}*"
|
269 |
audio = None
|
270 |
else:
|
271 |
+
final_answer += "\n\n*TTS is disabled. Audio not available.*"
|
272 |
audio = None
|
273 |
|
|
|
|
|
274 |
yield {
|
275 |
+
'answer_output': gr.Markdown(final_answer),
|
276 |
+
'sources_output': gr.HTML(sources_html),
|
277 |
+
'search_btn': gr.Button("Search", interactive=True),
|
278 |
+
'chat_history_display': updated_history,
|
279 |
+
'audio_output': audio if audio is not None else gr.Audio(value=None)
|
280 |
}
|
281 |
|
282 |
except Exception as e:
|
283 |
error_message = str(e)
|
284 |
if "GPU quota" in error_message:
|
285 |
+
error_message = "⚠️ GPU quota exceeded. Please try again later when the daily quota resets."
|
286 |
yield {
|
287 |
+
'answer_output': gr.Markdown(f"Error: {error_message}"),
|
288 |
+
'sources_output': gr.HTML(sources_html),
|
289 |
+
'search_btn': gr.Button("Search", interactive=True),
|
290 |
+
'chat_history_display': history + [[query, f"*Error: {error_message}*"]],
|
291 |
+
'audio_output': None
|
292 |
}
|
293 |
|
294 |
# Update the CSS for better contrast and readability
|
|
|
297 |
max-width: 1200px !important;
|
298 |
background-color: #f7f7f8 !important;
|
299 |
}
|
|
|
300 |
#header {
|
301 |
text-align: center;
|
302 |
margin-bottom: 2rem;
|
|
|
305 |
border-radius: 12px;
|
306 |
color: white;
|
307 |
}
|
|
|
308 |
#header h1 {
|
309 |
color: white;
|
310 |
font-size: 2.5rem;
|
311 |
margin-bottom: 0.5rem;
|
312 |
}
|
|
|
313 |
#header h3 {
|
314 |
color: #a8a9ab;
|
315 |
}
|
|
|
316 |
.search-container {
|
317 |
background: #1a1b1e;
|
318 |
border-radius: 12px;
|
|
|
320 |
padding: 1rem;
|
321 |
margin-bottom: 1rem;
|
322 |
}
|
|
|
323 |
.search-box {
|
324 |
padding: 1rem;
|
325 |
background: #2c2d30;
|
326 |
border-radius: 8px;
|
327 |
margin-bottom: 1rem;
|
328 |
}
|
|
|
|
|
329 |
.search-box input[type="text"] {
|
330 |
background: #3a3b3e !important;
|
331 |
border: 1px solid #4a4b4e !important;
|
332 |
color: white !important;
|
333 |
border-radius: 8px !important;
|
334 |
}
|
|
|
335 |
.search-box input[type="text"]::placeholder {
|
336 |
color: #a8a9ab !important;
|
337 |
}
|
|
|
|
|
338 |
.search-box button {
|
339 |
background: #2563eb !important;
|
340 |
border: none !important;
|
341 |
}
|
|
|
|
|
342 |
.results-container {
|
343 |
background: #2c2d30;
|
344 |
border-radius: 8px;
|
345 |
padding: 1rem;
|
346 |
margin-top: 1rem;
|
347 |
}
|
|
|
348 |
.answer-box {
|
349 |
background: #3a3b3e;
|
350 |
border-radius: 8px;
|
|
|
352 |
color: white;
|
353 |
margin-bottom: 1rem;
|
354 |
}
|
|
|
355 |
.answer-box p {
|
356 |
color: #e5e7eb;
|
357 |
line-height: 1.6;
|
358 |
}
|
|
|
359 |
.sources-container {
|
360 |
margin-top: 1rem;
|
361 |
background: #2c2d30;
|
362 |
border-radius: 8px;
|
363 |
padding: 1rem;
|
364 |
}
|
|
|
365 |
.source-item {
|
366 |
display: flex;
|
367 |
padding: 12px;
|
|
|
370 |
border-radius: 8px;
|
371 |
transition: all 0.2s;
|
372 |
}
|
|
|
373 |
.source-item:hover {
|
374 |
background: #4a4b4e;
|
375 |
}
|
|
|
376 |
.source-number {
|
377 |
font-weight: bold;
|
378 |
margin-right: 12px;
|
379 |
color: #60a5fa;
|
380 |
}
|
|
|
381 |
.source-content {
|
382 |
flex: 1;
|
383 |
}
|
|
|
384 |
.source-title {
|
385 |
color: #60a5fa;
|
386 |
font-weight: 500;
|
|
|
388 |
display: block;
|
389 |
margin-bottom: 4px;
|
390 |
}
|
|
|
391 |
.source-date {
|
392 |
color: #a8a9ab;
|
393 |
font-size: 0.9em;
|
394 |
margin-left: 8px;
|
395 |
}
|
|
|
396 |
.source-snippet {
|
397 |
color: #e5e7eb;
|
398 |
font-size: 0.9em;
|
399 |
line-height: 1.4;
|
400 |
}
|
|
|
401 |
.chat-history {
|
402 |
max-height: 400px;
|
403 |
overflow-y: auto;
|
|
|
406 |
border-radius: 8px;
|
407 |
margin-top: 1rem;
|
408 |
}
|
|
|
409 |
.examples-container {
|
410 |
background: #2c2d30;
|
411 |
border-radius: 8px;
|
412 |
padding: 1rem;
|
413 |
margin-top: 1rem;
|
414 |
}
|
|
|
415 |
.examples-container button {
|
416 |
background: #3a3b3e !important;
|
417 |
border: 1px solid #4a4b4e !important;
|
418 |
color: #e5e7eb !important;
|
419 |
}
|
|
|
|
|
420 |
.markdown-content {
|
421 |
color: #e5e7eb !important;
|
422 |
}
|
|
|
423 |
.markdown-content h1, .markdown-content h2, .markdown-content h3 {
|
424 |
color: white !important;
|
425 |
}
|
|
|
426 |
.markdown-content a {
|
427 |
color: #60a5fa !important;
|
428 |
}
|
|
|
|
|
429 |
.accordion {
|
430 |
background: #2c2d30 !important;
|
431 |
border-radius: 8px !important;
|
432 |
margin-top: 1rem !important;
|
433 |
}
|
|
|
434 |
.voice-selector {
|
435 |
margin-top: 1rem;
|
436 |
background: #2c2d30;
|
437 |
border-radius: 8px;
|
438 |
padding: 0.5rem;
|
439 |
}
|
|
|
440 |
.voice-selector select {
|
441 |
background: #3a3b3e !important;
|
442 |
color: white !important;
|
|
|
508 |
)
|
509 |
|
510 |
if __name__ == "__main__":
|
511 |
+
demo.launch(share=True)
|