Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,818 Bytes
cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 8a9a6c3 cf40b67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
import spaces
from duckduckgo_search import DDGS
import time
import torch
from datetime import datetime
import gc # For manual garbage collection
# Initialize model and tokenizer with optimizations
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
# Load config first to set optimal parameters
config = AutoConfig.from_pretrained(model_name)
config.use_cache = True # Enable KV-caching for faster inference
# Initialize tokenizer with optimizations
tokenizer = AutoTokenizer.from_pretrained(
model_name,
model_max_length=256, # Reduced for faster processing
padding_side="left",
truncation_side="left",
)
tokenizer.pad_token = tokenizer.eos_token
# Load model with optimizations
model = AutoModelForCausalLM.from_pretrained(
model_name,
config=config,
device_map="cpu",
low_cpu_mem_usage=True,
torch_dtype=torch.float32,
)
# Enable model optimizations
model.eval() # Set to evaluation mode
torch.set_num_threads(4) # Limit CPU threads for better performance
def get_web_results(query, max_results=3): # Reduced max results
"""Get web search results using DuckDuckGo"""
try:
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=max_results))
return [{
"title": result.get("title", ""),
"snippet": result["body"][:200], # Limit snippet length
"url": result["href"],
"date": result.get("published", "")
} for result in results]
except Exception as e:
return []
def format_prompt(query, context):
"""Format the prompt with web context - optimized version"""
context_lines = '\n'.join([f'[{i+1}] {res["snippet"]}'
for i, res in enumerate(context)])
return f"""Answer this query using the context: {query}\n\nContext:\n{context_lines}\n\nAnswer:"""
def format_sources(web_results):
"""Format sources with more details"""
if not web_results:
return "<div class='no-sources'>No sources available</div>"
sources_html = "<div class='sources-container'>"
for i, res in enumerate(web_results, 1):
title = res["title"] or "Source"
date = f"<span class='source-date'>{res['date']}</span>" if res['date'] else ""
sources_html += f"""
<div class='source-item'>
<div class='source-number'>[{i}]</div>
<div class='source-content'>
<a href="{res['url']}" target="_blank" class='source-title'>{title}</a>
{date}
<div class='source-snippet'>{res['snippet'][:150]}...</div>
</div>
</div>
"""
sources_html += "</div>"
return sources_html
def generate_answer(prompt):
"""Generate answer using the DeepSeek model - optimized version"""
try:
# Clear CUDA cache and garbage collect
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
inputs = tokenizer(
prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=256,
return_attention_mask=True
)
with torch.no_grad(): # Disable gradient calculation
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=100, # Further reduced for speed
temperature=0.7,
top_p=0.95,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
num_beams=1,
early_stopping=True,
no_repeat_ngram_size=3,
length_penalty=1.0
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response.split('Answer:')[-1].strip()
except Exception as e:
return f"Error generating response: {str(e)}"
def process_query(query, history):
"""Process user query with optimized streaming effect"""
try:
if history is None:
history = []
# Get web results first
web_results = get_web_results(query)
sources_html = format_sources(web_results)
# Show searching status
yield {
answer_output: gr.Markdown("*Searching and generating response...*"),
sources_output: gr.HTML(sources_html),
search_btn: gr.Button("Please wait...", interactive=False),
chat_history_display: history + [[query, "*Processing...*"]]
}
# Generate answer with timeout protection
prompt = format_prompt(query, web_results)
answer = generate_answer(prompt)
# Update with final answer
final_history = history + [[query, answer]]
yield {
answer_output: gr.Markdown(answer),
sources_output: gr.HTML(sources_html),
search_btn: gr.Button("Search", interactive=True),
chat_history_display: final_history
}
except Exception as e:
error_msg = f"Error: {str(e)}"
yield {
answer_output: gr.Markdown(error_msg),
sources_output: gr.HTML("<div>Error fetching sources</div>"),
search_btn: gr.Button("Search", interactive=True),
chat_history_display: history + [[query, error_msg]]
}
# Update the CSS for better contrast and readability
css = """
.gradio-container {
max-width: 1200px !important;
background-color: #f7f7f8 !important;
}
#header {
text-align: center;
margin-bottom: 2rem;
padding: 2rem 0;
background: #1a1b1e;
border-radius: 12px;
color: white;
}
#header h1 {
color: white;
font-size: 2.5rem;
margin-bottom: 0.5rem;
}
#header h3 {
color: #a8a9ab;
}
.search-container {
background: #1a1b1e;
border-radius: 12px;
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
padding: 1rem;
margin-bottom: 1rem;
}
.search-box {
padding: 1rem;
background: #2c2d30;
border-radius: 8px;
margin-bottom: 1rem;
}
/* Style the input textbox */
.search-box input[type="text"] {
background: #3a3b3e !important;
border: 1px solid #4a4b4e !important;
color: white !important;
border-radius: 8px !important;
}
.search-box input[type="text"]::placeholder {
color: #a8a9ab !important;
}
/* Style the search button */
.search-box button {
background: #2563eb !important;
border: none !important;
}
/* Results area styling */
.results-container {
background: #2c2d30;
border-radius: 8px;
padding: 1rem;
margin-top: 1rem;
}
.answer-box {
background: #3a3b3e;
border-radius: 8px;
padding: 1.5rem;
color: white;
margin-bottom: 1rem;
}
.answer-box p {
color: #e5e7eb;
line-height: 1.6;
}
.sources-container {
margin-top: 1rem;
background: #2c2d30;
border-radius: 8px;
padding: 1rem;
}
.source-item {
display: flex;
padding: 12px;
margin: 8px 0;
background: #3a3b3e;
border-radius: 8px;
transition: all 0.2s;
}
.source-item:hover {
background: #4a4b4e;
}
.source-number {
font-weight: bold;
margin-right: 12px;
color: #60a5fa;
}
.source-content {
flex: 1;
}
.source-title {
color: #60a5fa;
font-weight: 500;
text-decoration: none;
display: block;
margin-bottom: 4px;
}
.source-date {
color: #a8a9ab;
font-size: 0.9em;
margin-left: 8px;
}
.source-snippet {
color: #e5e7eb;
font-size: 0.9em;
line-height: 1.4;
}
.chat-history {
max-height: 400px;
overflow-y: auto;
padding: 1rem;
background: #2c2d30;
border-radius: 8px;
margin-top: 1rem;
}
.examples-container {
background: #2c2d30;
border-radius: 8px;
padding: 1rem;
margin-top: 1rem;
}
.examples-container button {
background: #3a3b3e !important;
border: 1px solid #4a4b4e !important;
color: #e5e7eb !important;
}
/* Markdown content styling */
.markdown-content {
color: #e5e7eb !important;
}
.markdown-content h1, .markdown-content h2, .markdown-content h3 {
color: white !important;
}
.markdown-content a {
color: #60a5fa !important;
}
/* Accordion styling */
.accordion {
background: #2c2d30 !important;
border-radius: 8px !important;
margin-top: 1rem !important;
}
"""
# Update the Gradio interface layout
with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
chat_history = gr.State([])
with gr.Column(elem_id="header"):
gr.Markdown("# π AI Search Assistant")
gr.Markdown("### Powered by DeepSeek & Real-time Web Results")
with gr.Column(elem_classes="search-container"):
with gr.Row(elem_classes="search-box"):
search_input = gr.Textbox(
label="",
placeholder="Ask anything...",
scale=5,
container=False
)
search_btn = gr.Button("Search", variant="primary", scale=1)
with gr.Row(elem_classes="results-container"):
with gr.Column(scale=2):
with gr.Column(elem_classes="answer-box"):
answer_output = gr.Markdown(elem_classes="markdown-content")
with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
chat_history_display = gr.Chatbot(elem_classes="chat-history")
with gr.Column(scale=1):
with gr.Column(elem_classes="sources-box"):
gr.Markdown("### Sources")
sources_output = gr.HTML()
with gr.Row(elem_classes="examples-container"):
gr.Examples(
examples=[
"What are the latest developments in quantum computing?",
"Explain the impact of AI on healthcare",
"What are the best practices for sustainable living?",
"How is climate change affecting ocean ecosystems?"
],
inputs=search_input,
label="Try these examples"
)
# Handle interactions
search_btn.click(
fn=process_query,
inputs=[search_input, chat_history],
outputs=[answer_output, sources_output, search_btn, chat_history_display]
)
# Also trigger search on Enter key
search_input.submit(
fn=process_query,
inputs=[search_input, chat_history],
outputs=[answer_output, sources_output, search_btn, chat_history_display]
)
if __name__ == "__main__":
demo.launch(share=True) |