File size: 10,818 Bytes
cf40b67
8a9a6c3
cf40b67
 
 
 
 
8a9a6c3
cf40b67
8a9a6c3
cf40b67
8a9a6c3
 
 
 
 
 
 
 
 
 
 
 
cf40b67
 
8a9a6c3
cf40b67
 
8a9a6c3
 
cf40b67
8a9a6c3
cf40b67
 
8a9a6c3
 
 
 
 
cf40b67
 
 
 
 
 
8a9a6c3
cf40b67
 
 
 
 
 
 
8a9a6c3
 
 
 
cf40b67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a9a6c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf40b67
8a9a6c3
 
cf40b67
 
8a9a6c3
cf40b67
 
 
8a9a6c3
cf40b67
 
 
 
8a9a6c3
cf40b67
8a9a6c3
cf40b67
8a9a6c3
 
cf40b67
 
8a9a6c3
cf40b67
 
 
8a9a6c3
 
cf40b67
8a9a6c3
cf40b67
 
8a9a6c3
cf40b67
 
8a9a6c3
 
cf40b67
8a9a6c3
 
cf40b67
8a9a6c3
cf40b67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
import spaces
from duckduckgo_search import DDGS
import time
import torch
from datetime import datetime
import gc  # For manual garbage collection

# Initialize model and tokenizer with optimizations
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"

# Load config first to set optimal parameters
config = AutoConfig.from_pretrained(model_name)
config.use_cache = True  # Enable KV-caching for faster inference

# Initialize tokenizer with optimizations
tokenizer = AutoTokenizer.from_pretrained(
    model_name,
    model_max_length=256,  # Reduced for faster processing
    padding_side="left",
    truncation_side="left",
)
tokenizer.pad_token = tokenizer.eos_token

# Load model with optimizations
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    config=config,
    device_map="cpu",
    low_cpu_mem_usage=True,
    torch_dtype=torch.float32,
)

# Enable model optimizations
model.eval()  # Set to evaluation mode
torch.set_num_threads(4)  # Limit CPU threads for better performance

def get_web_results(query, max_results=3):  # Reduced max results
    """Get web search results using DuckDuckGo"""
    try:
        with DDGS() as ddgs:
            results = list(ddgs.text(query, max_results=max_results))
            return [{
                "title": result.get("title", ""),
                "snippet": result["body"][:200],  # Limit snippet length
                "url": result["href"],
                "date": result.get("published", "")
            } for result in results]
    except Exception as e:
        return []

def format_prompt(query, context):
    """Format the prompt with web context - optimized version"""
    context_lines = '\n'.join([f'[{i+1}] {res["snippet"]}' 
                              for i, res in enumerate(context)])
    return f"""Answer this query using the context: {query}\n\nContext:\n{context_lines}\n\nAnswer:"""

def format_sources(web_results):
    """Format sources with more details"""
    if not web_results:
        return "<div class='no-sources'>No sources available</div>"
    
    sources_html = "<div class='sources-container'>"
    for i, res in enumerate(web_results, 1):
        title = res["title"] or "Source"
        date = f"<span class='source-date'>{res['date']}</span>" if res['date'] else ""
        sources_html += f"""
        <div class='source-item'>
            <div class='source-number'>[{i}]</div>
            <div class='source-content'>
                <a href="{res['url']}" target="_blank" class='source-title'>{title}</a>
                {date}
                <div class='source-snippet'>{res['snippet'][:150]}...</div>
            </div>
        </div>
        """
    sources_html += "</div>"
    return sources_html

def generate_answer(prompt):
    """Generate answer using the DeepSeek model - optimized version"""
    try:
        # Clear CUDA cache and garbage collect
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        gc.collect()
        
        inputs = tokenizer(
            prompt, 
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=256,
            return_attention_mask=True
        )
        
        with torch.no_grad():  # Disable gradient calculation
            outputs = model.generate(
                inputs.input_ids,
                attention_mask=inputs.attention_mask,
                max_new_tokens=100,  # Further reduced for speed
                temperature=0.7,
                top_p=0.95,
                pad_token_id=tokenizer.eos_token_id,
                do_sample=True,
                num_beams=1,
                early_stopping=True,
                no_repeat_ngram_size=3,
                length_penalty=1.0
            )
        
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return response.split('Answer:')[-1].strip()
    
    except Exception as e:
        return f"Error generating response: {str(e)}"

def process_query(query, history):
    """Process user query with optimized streaming effect"""
    try:
        if history is None:
            history = []
        
        # Get web results first
        web_results = get_web_results(query)
        sources_html = format_sources(web_results)
        
        # Show searching status
        yield {
            answer_output: gr.Markdown("*Searching and generating response...*"),
            sources_output: gr.HTML(sources_html),
            search_btn: gr.Button("Please wait...", interactive=False),
            chat_history_display: history + [[query, "*Processing...*"]]
        }
        
        # Generate answer with timeout protection
        prompt = format_prompt(query, web_results)
        answer = generate_answer(prompt)
        
        # Update with final answer
        final_history = history + [[query, answer]]
        yield {
            answer_output: gr.Markdown(answer),
            sources_output: gr.HTML(sources_html),
            search_btn: gr.Button("Search", interactive=True),
            chat_history_display: final_history
        }
        
    except Exception as e:
        error_msg = f"Error: {str(e)}"
        yield {
            answer_output: gr.Markdown(error_msg),
            sources_output: gr.HTML("<div>Error fetching sources</div>"),
            search_btn: gr.Button("Search", interactive=True),
            chat_history_display: history + [[query, error_msg]]
        }

# Update the CSS for better contrast and readability
css = """
.gradio-container {
    max-width: 1200px !important;
    background-color: #f7f7f8 !important;
}

#header {
    text-align: center;
    margin-bottom: 2rem;
    padding: 2rem 0;
    background: #1a1b1e;
    border-radius: 12px;
    color: white;
}

#header h1 {
    color: white;
    font-size: 2.5rem;
    margin-bottom: 0.5rem;
}

#header h3 {
    color: #a8a9ab;
}

.search-container {
    background: #1a1b1e;
    border-radius: 12px;
    box-shadow: 0 4px 12px rgba(0,0,0,0.1);
    padding: 1rem;
    margin-bottom: 1rem;
}

.search-box {
    padding: 1rem;
    background: #2c2d30;
    border-radius: 8px;
    margin-bottom: 1rem;
}

/* Style the input textbox */
.search-box input[type="text"] {
    background: #3a3b3e !important;
    border: 1px solid #4a4b4e !important;
    color: white !important;
    border-radius: 8px !important;
}

.search-box input[type="text"]::placeholder {
    color: #a8a9ab !important;
}

/* Style the search button */
.search-box button {
    background: #2563eb !important;
    border: none !important;
}

/* Results area styling */
.results-container {
    background: #2c2d30;
    border-radius: 8px;
    padding: 1rem;
    margin-top: 1rem;
}

.answer-box {
    background: #3a3b3e;
    border-radius: 8px;
    padding: 1.5rem;
    color: white;
    margin-bottom: 1rem;
}

.answer-box p {
    color: #e5e7eb;
    line-height: 1.6;
}

.sources-container {
    margin-top: 1rem;
    background: #2c2d30;
    border-radius: 8px;
    padding: 1rem;
}

.source-item {
    display: flex;
    padding: 12px;
    margin: 8px 0;
    background: #3a3b3e;
    border-radius: 8px;
    transition: all 0.2s;
}

.source-item:hover {
    background: #4a4b4e;
}

.source-number {
    font-weight: bold;
    margin-right: 12px;
    color: #60a5fa;
}

.source-content {
    flex: 1;
}

.source-title {
    color: #60a5fa;
    font-weight: 500;
    text-decoration: none;
    display: block;
    margin-bottom: 4px;
}

.source-date {
    color: #a8a9ab;
    font-size: 0.9em;
    margin-left: 8px;
}

.source-snippet {
    color: #e5e7eb;
    font-size: 0.9em;
    line-height: 1.4;
}

.chat-history {
    max-height: 400px;
    overflow-y: auto;
    padding: 1rem;
    background: #2c2d30;
    border-radius: 8px;
    margin-top: 1rem;
}

.examples-container {
    background: #2c2d30;
    border-radius: 8px;
    padding: 1rem;
    margin-top: 1rem;
}

.examples-container button {
    background: #3a3b3e !important;
    border: 1px solid #4a4b4e !important;
    color: #e5e7eb !important;
}

/* Markdown content styling */
.markdown-content {
    color: #e5e7eb !important;
}

.markdown-content h1, .markdown-content h2, .markdown-content h3 {
    color: white !important;
}

.markdown-content a {
    color: #60a5fa !important;
}

/* Accordion styling */
.accordion {
    background: #2c2d30 !important;
    border-radius: 8px !important;
    margin-top: 1rem !important;
}
"""

# Update the Gradio interface layout
with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
    chat_history = gr.State([])
    
    with gr.Column(elem_id="header"):
        gr.Markdown("# πŸ” AI Search Assistant")
        gr.Markdown("### Powered by DeepSeek & Real-time Web Results")
    
    with gr.Column(elem_classes="search-container"):
        with gr.Row(elem_classes="search-box"):
            search_input = gr.Textbox(
                label="", 
                placeholder="Ask anything...", 
                scale=5,
                container=False
            )
            search_btn = gr.Button("Search", variant="primary", scale=1)
        
        with gr.Row(elem_classes="results-container"):
            with gr.Column(scale=2):
                with gr.Column(elem_classes="answer-box"):
                    answer_output = gr.Markdown(elem_classes="markdown-content")
                with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
                    chat_history_display = gr.Chatbot(elem_classes="chat-history")
            with gr.Column(scale=1):
                with gr.Column(elem_classes="sources-box"):
                    gr.Markdown("### Sources")
                    sources_output = gr.HTML()
        
        with gr.Row(elem_classes="examples-container"):
            gr.Examples(
                examples=[
                    "What are the latest developments in quantum computing?",
                    "Explain the impact of AI on healthcare",
                    "What are the best practices for sustainable living?",
                    "How is climate change affecting ocean ecosystems?"
                ],
                inputs=search_input,
                label="Try these examples"
            )

    # Handle interactions
    search_btn.click(
        fn=process_query,
        inputs=[search_input, chat_history],
        outputs=[answer_output, sources_output, search_btn, chat_history_display]
    )
    
    # Also trigger search on Enter key
    search_input.submit(
        fn=process_query,
        inputs=[search_input, chat_history],
        outputs=[answer_output, sources_output, search_btn, chat_history_display]
    )

if __name__ == "__main__":
    demo.launch(share=True)