File size: 7,271 Bytes
cf40b67
60c475d
cf40b67
 
60c475d
835fc41
60c475d
 
b17a402
60c475d
 
 
cf40b67
 
60c475d
 
 
 
 
cf40b67
60c475d
cf40b67
60c475d
 
 
835fc41
60c475d
 
835fc41
 
60c475d
 
cf40b67
60c475d
 
 
 
 
 
 
 
 
 
 
cf40b67
60c475d
 
 
cf40b67
 
 
60c475d
 
cf40b67
 
 
 
 
60c475d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf40b67
60c475d
 
 
 
 
cf40b67
60c475d
 
 
cf40b67
60c475d
cf40b67
60c475d
 
 
 
cf40b67
60c475d
 
 
 
cf40b67
60c475d
 
 
cf40b67
 
60c475d
 
 
 
 
 
 
 
 
 
cf40b67
 
60c475d
cf40b67
60c475d
 
 
 
 
cf40b67
 
60c475d
 
 
cf40b67
 
60c475d
 
 
 
 
 
 
 
cf40b67
 
60c475d
 
 
 
 
 
cf40b67
 
60c475d
cf40b67
 
60c475d
cf40b67
60c475d
cf40b67
60c475d
 
cf40b67
 
60c475d
 
cf40b67
60c475d
 
 
 
 
 
cf40b67
60c475d
835fc41
cf40b67
 
60c475d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf40b67
 
60c475d
 
 
 
 
 
 
 
cf40b67
60c475d
cf40b67
60c475d
 
 
 
 
 
 
cf40b67
 
60c475d
cf40b67
60c475d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import gradio as gr
from transformers import pipeline
from duckduckgo_search import DDGS
from datetime import datetime
import asyncio

# Initialize a lightweight text generation model (distilgpt2 for speed)
generator = pipeline("text-generation", model="distilgpt2", device=0 if gr.cuda.is_available() else -1)

# Web search function using DuckDuckGo
async def get_web_results(query: str, max_results: int = 5) -> list:
    """Fetch web results asynchronously for deep research."""
    try:
        with DDGS() as ddgs:
            results = await asyncio.to_thread(lambda: list(ddgs.text(query, max_results=max_results)))
            return [
                {"title": r.get("title", "No Title"), "snippet": r["body"], "url": r["href"]}
                for r in results
            ]
    except Exception as e:
        return [{"title": "Error", "snippet": f"Failed to fetch results: {str(e)}", "url": "#"}]

# Format prompt for the AI model
def format_prompt(query: str, web_results: list) -> str:
    """Create a concise prompt with web context."""
    current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    context = "\n".join([f"- {r['title']}: {r['snippet']}" for r in web_results])
    return f"""Time: {current_time}
Query: {query}
Web Context:
{context}
Provide a detailed, well-structured answer in markdown format with citations [1], [2], etc."""

# Generate answer using the AI model
def generate_answer(prompt: str) -> str:
    """Generate a detailed research answer."""
    response = generator(prompt, max_length=300, num_return_sequences=1, truncation=True)[0]["generated_text"]
    # Extract the answer after the prompt
    answer_start = response.find("Provide a detailed") + len("Provide a detailed, well-structured answer in markdown format with citations [1], [2], etc.")
    return response[answer_start:].strip()

# Format sources for display
def format_sources(web_results: list) -> str:
    """Create an HTML list of sources."""
    if not web_results:
        return "<div>No sources available</div>"
    
    sources_html = "<div class='sources-list'>"
    for i, res in enumerate(web_results, 1):
        sources_html += f"""
        <div class='source-item'>
            <span class='source-number'>[{i}]</span>
            <a href='{res['url']}' target='_blank'>{res['title']}</a>: {res['snippet'][:150]}...
        </div>
        """
    sources_html += "</div>"
    return sources_html

# Main processing function
async def process_deep_research(query: str, history: list):
    """Handle the deep research process with progressive updates."""
    if not history:
        history = []

    # Step 1: Initial loading state
    yield {
        "answer": "*Searching the web...*",
        "sources": "<div>Fetching sources...</div>",
        "history": history + [[query, "*Searching...*"]]
    }

    # Step 2: Fetch web results
    web_results = await get_web_results(query)
    sources_html = format_sources(web_results)

    # Step 3: Update with web search completed
    yield {
        "answer": "*Analyzing results...*",
        "sources": sources_html,
        "history": history + [[query, "*Analyzing...*"]]
    }

    # Step 4: Generate detailed answer
    prompt = format_prompt(query, web_results)
    answer = generate_answer(prompt)
    final_history = history + [[query, answer]]

    # Step 5: Final result
    yield {
        "answer": answer,
        "sources": sources_html,
        "history": final_history
    }

# Custom CSS for a cool, modern UI
css = """
body {
    font-family: 'Arial', sans-serif;
    background: #1a1a1a;
    color: #ffffff;
}
.gradio-container {
    max-width: 1000px;
    margin: 0 auto;
    padding: 20px;
}
.header {
    text-align: center;
    padding: 20px;
    background: linear-gradient(135deg, #2c3e50, #3498db);
    border-radius: 10px;
    margin-bottom: 20px;
}
.header h1 {
    font-size: 2.5em;
    margin: 0;
    color: #ffffff;
}
.header p {
    color: #bdc3c7;
    font-size: 1.1em;
}
.search-box {
    background: #2c2c2c;
    padding: 15px;
    border-radius: 10px;
    box-shadow: 0 4px 10px rgba(0, 0, 0, 0.3);
}
.search-box input {
    background: #3a3a3a !important;
    color: #ffffff !important;
    border: none !important;
    border-radius: 5px !important;
}
.search-box button {
    background: #3498db !important;
    border: none !important;
    border-radius: 5px !important;
    transition: background 0.3s;
}
.search-box button:hover {
    background: #2980b9 !important;
}
.results-container {
    margin-top: 20px;
    display: flex;
    gap: 20px;
}
.answer-box {
    flex: 2;
    background: #2c2c2c;
    padding: 20px;
    border-radius: 10px;
    box-shadow: 0 4px 10px rgba(0, 0, 0, 0.3);
}
.answer-box .markdown {
    color: #ecf0f1;
    line-height: 1.6;
}
.sources-list {
    flex: 1;
    background: #2c2c2c;
    padding: 15px;
    border-radius: 10px;
    box-shadow: 0 4px 10px rgba(0, 0, 0, 0.3);
}
.source-item {
    margin-bottom: 10px;
}
.source-number {
    color: #3498db;
    font-weight: bold;
    margin-right: 5px;
}
.source-item a {
    color: #3498db;
    text-decoration: none;
}
.source-item a:hover {
    text-decoration: underline;
}
.history-box {
    margin-top: 20px;
    background: #2c2c2c;
    padding: 15px;
    border-radius: 10px;
    max-height: 300px;
    overflow-y: auto;
    box-shadow: 0 4px 10px rgba(0, 0, 0, 0.3);
}
"""

# Gradio app setup with Blocks for better control
with gr.Blocks(title="Deep Research Engine", css=css) as demo:
    history_state = gr.State([])

    # Header
    with gr.Column(elem_classes="header"):
        gr.Markdown("# Deep Research Engine")
        gr.Markdown("Your gateway to in-depth answers with real-time web insights.")

    # Search input and button
    with gr.Row(elem_classes="search-box"):
        search_input = gr.Textbox(label="", placeholder="Ask anything...", lines=2)
        search_btn = gr.Button("Research", variant="primary")

    # Results layout
    with gr.Row(elem_classes="results-container"):
        with gr.Column():
            answer_output = gr.Markdown(label="Research Findings", elem_classes="answer-box")
        with gr.Column():
            sources_output = gr.HTML(label="Sources", elem_classes="sources-list")

    # Chat history
    with gr.Row():
        history_display = gr.Chatbot(label="History", elem_classes="history-box")

    # Event handling
    async def handle_search(query, history):
        async for step in process_deep_research(query, history):
            yield step["answer"], step["sources"], step["history"]

    search_btn.click(
        fn=handle_search,
        inputs=[search_input, history_state],
        outputs=[answer_output, sources_output, history_display],
        _js="() => [document.querySelector('.search-box input').value, null]"  # Ensure history is managed
    ).then(
        fn=lambda x: x,
        inputs=[history_display],
        outputs=[history_state]
    )

    search_input.submit(
        fn=handle_search,
        inputs=[search_input, history_state],
        outputs=[answer_output, sources_output, history_display]
    ).then(
        fn=lambda x: x,
        inputs=[history_display],
        outputs=[history_state]
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()