Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,271 Bytes
cf40b67 60c475d cf40b67 60c475d 835fc41 60c475d b17a402 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d 835fc41 60c475d 835fc41 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d 835fc41 cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
from transformers import pipeline
from duckduckgo_search import DDGS
from datetime import datetime
import asyncio
# Initialize a lightweight text generation model (distilgpt2 for speed)
generator = pipeline("text-generation", model="distilgpt2", device=0 if gr.cuda.is_available() else -1)
# Web search function using DuckDuckGo
async def get_web_results(query: str, max_results: int = 5) -> list:
"""Fetch web results asynchronously for deep research."""
try:
with DDGS() as ddgs:
results = await asyncio.to_thread(lambda: list(ddgs.text(query, max_results=max_results)))
return [
{"title": r.get("title", "No Title"), "snippet": r["body"], "url": r["href"]}
for r in results
]
except Exception as e:
return [{"title": "Error", "snippet": f"Failed to fetch results: {str(e)}", "url": "#"}]
# Format prompt for the AI model
def format_prompt(query: str, web_results: list) -> str:
"""Create a concise prompt with web context."""
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
context = "\n".join([f"- {r['title']}: {r['snippet']}" for r in web_results])
return f"""Time: {current_time}
Query: {query}
Web Context:
{context}
Provide a detailed, well-structured answer in markdown format with citations [1], [2], etc."""
# Generate answer using the AI model
def generate_answer(prompt: str) -> str:
"""Generate a detailed research answer."""
response = generator(prompt, max_length=300, num_return_sequences=1, truncation=True)[0]["generated_text"]
# Extract the answer after the prompt
answer_start = response.find("Provide a detailed") + len("Provide a detailed, well-structured answer in markdown format with citations [1], [2], etc.")
return response[answer_start:].strip()
# Format sources for display
def format_sources(web_results: list) -> str:
"""Create an HTML list of sources."""
if not web_results:
return "<div>No sources available</div>"
sources_html = "<div class='sources-list'>"
for i, res in enumerate(web_results, 1):
sources_html += f"""
<div class='source-item'>
<span class='source-number'>[{i}]</span>
<a href='{res['url']}' target='_blank'>{res['title']}</a>: {res['snippet'][:150]}...
</div>
"""
sources_html += "</div>"
return sources_html
# Main processing function
async def process_deep_research(query: str, history: list):
"""Handle the deep research process with progressive updates."""
if not history:
history = []
# Step 1: Initial loading state
yield {
"answer": "*Searching the web...*",
"sources": "<div>Fetching sources...</div>",
"history": history + [[query, "*Searching...*"]]
}
# Step 2: Fetch web results
web_results = await get_web_results(query)
sources_html = format_sources(web_results)
# Step 3: Update with web search completed
yield {
"answer": "*Analyzing results...*",
"sources": sources_html,
"history": history + [[query, "*Analyzing...*"]]
}
# Step 4: Generate detailed answer
prompt = format_prompt(query, web_results)
answer = generate_answer(prompt)
final_history = history + [[query, answer]]
# Step 5: Final result
yield {
"answer": answer,
"sources": sources_html,
"history": final_history
}
# Custom CSS for a cool, modern UI
css = """
body {
font-family: 'Arial', sans-serif;
background: #1a1a1a;
color: #ffffff;
}
.gradio-container {
max-width: 1000px;
margin: 0 auto;
padding: 20px;
}
.header {
text-align: center;
padding: 20px;
background: linear-gradient(135deg, #2c3e50, #3498db);
border-radius: 10px;
margin-bottom: 20px;
}
.header h1 {
font-size: 2.5em;
margin: 0;
color: #ffffff;
}
.header p {
color: #bdc3c7;
font-size: 1.1em;
}
.search-box {
background: #2c2c2c;
padding: 15px;
border-radius: 10px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.3);
}
.search-box input {
background: #3a3a3a !important;
color: #ffffff !important;
border: none !important;
border-radius: 5px !important;
}
.search-box button {
background: #3498db !important;
border: none !important;
border-radius: 5px !important;
transition: background 0.3s;
}
.search-box button:hover {
background: #2980b9 !important;
}
.results-container {
margin-top: 20px;
display: flex;
gap: 20px;
}
.answer-box {
flex: 2;
background: #2c2c2c;
padding: 20px;
border-radius: 10px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.3);
}
.answer-box .markdown {
color: #ecf0f1;
line-height: 1.6;
}
.sources-list {
flex: 1;
background: #2c2c2c;
padding: 15px;
border-radius: 10px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.3);
}
.source-item {
margin-bottom: 10px;
}
.source-number {
color: #3498db;
font-weight: bold;
margin-right: 5px;
}
.source-item a {
color: #3498db;
text-decoration: none;
}
.source-item a:hover {
text-decoration: underline;
}
.history-box {
margin-top: 20px;
background: #2c2c2c;
padding: 15px;
border-radius: 10px;
max-height: 300px;
overflow-y: auto;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.3);
}
"""
# Gradio app setup with Blocks for better control
with gr.Blocks(title="Deep Research Engine", css=css) as demo:
history_state = gr.State([])
# Header
with gr.Column(elem_classes="header"):
gr.Markdown("# Deep Research Engine")
gr.Markdown("Your gateway to in-depth answers with real-time web insights.")
# Search input and button
with gr.Row(elem_classes="search-box"):
search_input = gr.Textbox(label="", placeholder="Ask anything...", lines=2)
search_btn = gr.Button("Research", variant="primary")
# Results layout
with gr.Row(elem_classes="results-container"):
with gr.Column():
answer_output = gr.Markdown(label="Research Findings", elem_classes="answer-box")
with gr.Column():
sources_output = gr.HTML(label="Sources", elem_classes="sources-list")
# Chat history
with gr.Row():
history_display = gr.Chatbot(label="History", elem_classes="history-box")
# Event handling
async def handle_search(query, history):
async for step in process_deep_research(query, history):
yield step["answer"], step["sources"], step["history"]
search_btn.click(
fn=handle_search,
inputs=[search_input, history_state],
outputs=[answer_output, sources_output, history_display],
_js="() => [document.querySelector('.search-box input').value, null]" # Ensure history is managed
).then(
fn=lambda x: x,
inputs=[history_display],
outputs=[history_state]
)
search_input.submit(
fn=handle_search,
inputs=[search_input, history_state],
outputs=[answer_output, sources_output, history_display]
).then(
fn=lambda x: x,
inputs=[history_display],
outputs=[history_state]
)
# Launch the app
if __name__ == "__main__":
demo.launch() |