Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	
		Sagar Thacker
		
	commited on
		
		
					Commit 
							
							·
						
						925325b
	
1
								Parent(s):
							
							6dd5319
								
Updated app.py and added examples
Browse files- .gitattributes +4 -0
- app.py +43 -32
- examples/basset.jpg +3 -0
- examples/cat.jpg +3 -0
- examples/dog.jpg +3 -0
- examples/dunno.jpg +3 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
|  | |
|  | |
|  | 
|  | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 36 | 
            +
            examples/basset.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 37 | 
            +
            examples/cat.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 38 | 
            +
            examples/dog.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 39 | 
            +
            examples/dunno.jpg filter=lfs diff=lfs merge=lfs -text
         | 
    	
        app.py
    CHANGED
    
    | @@ -27,37 +27,47 @@ def predict(pickup, dropoff, trip_distance): | |
| 27 | 
             
                return "The predicted duration is %.4f minutes." % duration
         | 
| 28 |  | 
| 29 | 
             
            with gr.Blocks() as demo:
         | 
| 30 | 
            -
                gr.Markdown(" | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 31 |  | 
| 32 | 
             
                with gr.Tab("Predict Taxi Duration"):
         | 
| 33 | 
             
                    with gr.Row():
         | 
| 34 | 
            -
                         | 
| 35 | 
            -
                             | 
| 36 | 
            -
             | 
| 37 | 
            -
             | 
| 38 | 
            -
             | 
| 39 | 
            -
             | 
| 40 | 
            -
             | 
| 41 | 
            -
             | 
| 42 | 
            -
             | 
| 43 | 
            -
             | 
| 44 | 
            -
             | 
| 45 | 
            -
             | 
| 46 | 
            -
             | 
| 47 | 
            -
             | 
| 48 | 
            -
             | 
| 49 | 
            -
             | 
| 50 | 
            -
             | 
| 51 | 
            -
             | 
| 52 | 
            -
             | 
| 53 | 
            -
             | 
| 54 | 
            -
             | 
| 55 | 
            -
             | 
| 56 | 
            -
             | 
| 57 | 
            -
             | 
| 58 | 
            -
                         | 
|  | |
|  | |
|  | |
|  | |
| 59 |  | 
| 60 | 
            -
                with gr.Tab("Classify Dog  | 
| 61 | 
             
                    def is_cat(x): return x[0].isupper()
         | 
| 62 |  | 
| 63 | 
             
                    learn = load_learner('./models/model.pkl')
         | 
| @@ -68,14 +78,15 @@ with gr.Blocks() as demo: | |
| 68 | 
             
                        pred, idx, probs = learn.predict(img)
         | 
| 69 | 
             
                        return dict(zip(categories, map(float,probs)))
         | 
| 70 |  | 
| 71 | 
            -
                     | 
| 72 | 
            -
             | 
| 73 | 
            -
             | 
|  | |
|  | |
| 74 |  | 
| 75 | 
             
                    classify_btn = gr.Button("Predict")
         | 
| 76 |  | 
| 77 | 
            -
             | 
| 78 | 
             
                predict_btn.click(fn=predict, inputs=[pickup, dropoff, trip_distance], outputs=output, api_name="predict-duration")       
         | 
| 79 | 
             
                classify_btn.click(fn=classify_image, inputs=image, outputs=label, api_name="classify-dog-breed")
         | 
| 80 |  | 
| 81 | 
            -
            demo.launch()
         | 
|  | |
| 27 | 
             
                return "The predicted duration is %.4f minutes." % duration
         | 
| 28 |  | 
| 29 | 
             
            with gr.Blocks() as demo:
         | 
| 30 | 
            +
                gr.Markdown("""
         | 
| 31 | 
            +
                This demo is a simple example of how to use Gradio to create a web interface for your machine learning models.
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                Models used in this demo are very simple and are not meant to perform well. The goal is to show how to use Gradio with a simple model.
         | 
| 34 | 
            +
                """)
         | 
| 35 | 
            +
                
         | 
| 36 | 
            +
                gr.Markdown("Predict Taxi Duration or Classify dog vs cat using this demo")
         | 
| 37 |  | 
| 38 | 
             
                with gr.Tab("Predict Taxi Duration"):
         | 
| 39 | 
             
                    with gr.Row():
         | 
| 40 | 
            +
                        with gr.Column():
         | 
| 41 | 
            +
                            with gr.Row():
         | 
| 42 | 
            +
                                pickup = gr.Dropdown(
         | 
| 43 | 
            +
                                    choices=list(zone_lookup["borough_zone"]), 
         | 
| 44 | 
            +
                                    label="Pickup Location", 
         | 
| 45 | 
            +
                                    info="The location where the passenger(s) were picked up", 
         | 
| 46 | 
            +
                                    value=lambda: random.choice(zone_lookup["borough_zone"])
         | 
| 47 | 
            +
                                )
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                                dropoff = gr.Dropdown(
         | 
| 50 | 
            +
                                    choices=list(zone_lookup["borough_zone"]), 
         | 
| 51 | 
            +
                                    label="Dropoff Location", 
         | 
| 52 | 
            +
                                    info="The location where the passenger(s) were dropped off", 
         | 
| 53 | 
            +
                                    value=lambda: random.choice(zone_lookup["borough_zone"])
         | 
| 54 | 
            +
                                )
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                            trip_distance = gr.Slider(
         | 
| 57 | 
            +
                                minimum=0.0, 
         | 
| 58 | 
            +
                                maximum=100.0,
         | 
| 59 | 
            +
                                step=0.1,
         | 
| 60 | 
            +
                                label="Trip Distance",
         | 
| 61 | 
            +
                                info="The trip distance in miles calculated by the taximeter",
         | 
| 62 | 
            +
                                value=lambda: random.uniform(0.0, 100.0)
         | 
| 63 | 
            +
                            )
         | 
| 64 | 
            +
                        with gr.Column():
         | 
| 65 | 
            +
                            output = gr.Textbox(label="Output Box")
         | 
| 66 | 
            +
                            predict_btn = gr.Button("Predict")
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    examples = gr.Examples([["Queens - Bellerose", "Bronx - Schuylerville/Edgewater Park", 25], ["Bronx - Norwood", "rooklyn - Sunset Park West", 55]], inputs=[pickup, dropoff, trip_distance])
         | 
| 69 |  | 
| 70 | 
            +
                with gr.Tab("Classify Dog vs Cat"):
         | 
| 71 | 
             
                    def is_cat(x): return x[0].isupper()
         | 
| 72 |  | 
| 73 | 
             
                    learn = load_learner('./models/model.pkl')
         | 
|  | |
| 78 | 
             
                        pred, idx, probs = learn.predict(img)
         | 
| 79 | 
             
                        return dict(zip(categories, map(float,probs)))
         | 
| 80 |  | 
| 81 | 
            +
                    with gr.Row():
         | 
| 82 | 
            +
                        image = gr.inputs.Image(shape=(192, 192))
         | 
| 83 | 
            +
                        label = gr.outputs.Label()
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                    examples = gr.Examples(['./examples/dog.jpg', './examples/cat.jpg', './examples/dunno.jpg', './examples/basset.jpg'], inputs=[image])
         | 
| 86 |  | 
| 87 | 
             
                    classify_btn = gr.Button("Predict")
         | 
| 88 |  | 
|  | |
| 89 | 
             
                predict_btn.click(fn=predict, inputs=[pickup, dropoff, trip_distance], outputs=output, api_name="predict-duration")       
         | 
| 90 | 
             
                classify_btn.click(fn=classify_image, inputs=image, outputs=label, api_name="classify-dog-breed")
         | 
| 91 |  | 
| 92 | 
            +
            demo.launch(share=True)
         | 
    	
        examples/basset.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        examples/cat.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        examples/dog.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        examples/dunno.jpg
    ADDED
    
    |   | 
| Git LFS Details
 |