import argparse import os import time import uuid from backbone.base import Base as BackboneBase from config.eval_config import EvalConfig as Config from dataset.base import Base as DatasetBase from evaluator import Evaluator from logger import Logger as Log from model import Model from roi.pooler import Pooler def _eval(path_to_checkpoint: str, dataset_name: str, backbone_name: str, path_to_data_dir: str, path_to_results_dir: str): dataset = DatasetBase.from_name(dataset_name)(path_to_data_dir, DatasetBase.Mode.EVAL, Config.IMAGE_MIN_SIDE, Config.IMAGE_MAX_SIDE) evaluator = Evaluator(dataset, path_to_data_dir, path_to_results_dir) Log.i('Found {:d} samples'.format(len(dataset))) backbone = BackboneBase.from_name(backbone_name)(pretrained=False) model = Model(backbone, dataset.num_classes(), pooler_mode=Config.POOLER_MODE, anchor_ratios=Config.ANCHOR_RATIOS, anchor_sizes=Config.ANCHOR_SIZES, rpn_pre_nms_top_n=Config.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=Config.RPN_POST_NMS_TOP_N).cuda() model.load(path_to_checkpoint) Log.i('Start evaluating with 1 GPU (1 batch per GPU)') mean_ap, detail = evaluator.evaluate(model) Log.i('Done') Log.i('mean AP = {:.4f}'.format(mean_ap)) Log.i('\n' + detail) if __name__ == '__main__': def main(): parser = argparse.ArgumentParser() parser.add_argument('-s', '--dataset', type=str, choices=DatasetBase.OPTIONS, required=True, help='name of dataset') parser.add_argument('-b', '--backbone', type=str, choices=BackboneBase.OPTIONS, required=True, help='name of backbone model') parser.add_argument('-d', '--data_dir', type=str, default='./data', help='path to data directory') parser.add_argument('--image_min_side', type=float, help='default: {:g}'.format(Config.IMAGE_MIN_SIDE)) parser.add_argument('--image_max_side', type=float, help='default: {:g}'.format(Config.IMAGE_MAX_SIDE)) parser.add_argument('--anchor_ratios', type=str, help='default: "{!s}"'.format(Config.ANCHOR_RATIOS)) parser.add_argument('--anchor_sizes', type=str, help='default: "{!s}"'.format(Config.ANCHOR_SIZES)) parser.add_argument('--pooler_mode', type=str, choices=Pooler.OPTIONS, help='default: {.value:s}'.format(Config.POOLER_MODE)) parser.add_argument('--rpn_pre_nms_top_n', type=int, help='default: {:d}'.format(Config.RPN_PRE_NMS_TOP_N)) parser.add_argument('--rpn_post_nms_top_n', type=int, help='default: {:d}'.format(Config.RPN_POST_NMS_TOP_N)) parser.add_argument('--checkpoint', type=str, help='path to evaluating checkpoint') args = parser.parse_args() path_to_checkpoint = args.checkpoint dataset_name = args.dataset backbone_name = args.backbone path_to_data_dir = args.data_dir path_to_results_dir = os.path.join(os.path.dirname(path_to_checkpoint), 'results-{:s}-{:s}-{:s}'.format( time.strftime('%Y%m%d%H%M%S'), path_to_checkpoint.split(os.path.sep)[-1].split(os.path.curdir)[0], str(uuid.uuid4()).split('-')[0])) os.makedirs(path_to_results_dir) Config.setup(image_min_side=args.image_min_side, image_max_side=args.image_max_side, anchor_ratios=args.anchor_ratios, anchor_sizes=args.anchor_sizes, pooler_mode=args.pooler_mode, rpn_pre_nms_top_n=args.rpn_pre_nms_top_n, rpn_post_nms_top_n=args.rpn_post_nms_top_n) Log.initialize(os.path.join(path_to_results_dir, 'eval.log')) Log.i('Arguments:') for k, v in vars(args).items(): Log.i(f'\t{k} = {v}') Log.i(Config.describe()) _eval(path_to_checkpoint, dataset_name, backbone_name, path_to_data_dir, path_to_results_dir) main()