sadimanna commited on
Commit
823a42e
·
1 Parent(s): 33dae20

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -39
app.py CHANGED
@@ -92,45 +92,45 @@ def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
92
  image = frame.to_ndarray(format="bgr24")
93
 
94
  # Run inference
95
- blob = cv2.dnn.blobFromImage(
96
- cv2.resize(image, (128, 128)), 0.007843, (128, 128), 127.5
97
- )
98
- net.setInput(blob)
99
- output = net.forward()
100
-
101
- h, w = image.shape[:2]
102
-
103
- # Convert the output array into a structured form.
104
- output = output.squeeze() # (1, 1, N, 7) -> (N, 7)
105
- output = output[output[:, 2] >= score_threshold]
106
- detections = [
107
- Detection(
108
- class_id=int(detection[1]),
109
- label=CLASSES[int(detection[1])],
110
- score=float(detection[2]),
111
- box=(detection[3:7] * np.array([w, h, w, h])),
112
- )
113
- for detection in output
114
- ]
115
-
116
- # Render bounding boxes and captions
117
- for detection in detections:
118
- caption = f"{detection.label}: {round(detection.score * 100, 2)}%"
119
- color = COLORS[detection.class_id]
120
- xmin, ymin, xmax, ymax = detection.box.astype("int")
121
-
122
- cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
123
- cv2.putText(
124
- image,
125
- caption,
126
- (xmin, ymin - 15 if ymin - 15 > 15 else ymin + 15),
127
- cv2.FONT_HERSHEY_SIMPLEX,
128
- 0.5,
129
- color,
130
- 2,
131
- )
132
-
133
- result_queue.put(detections)
134
 
135
  return av.VideoFrame.from_ndarray(image, format="bgr24")
136
 
 
92
  image = frame.to_ndarray(format="bgr24")
93
 
94
  # Run inference
95
+ # blob = cv2.dnn.blobFromImage(
96
+ # cv2.resize(image, (128, 128)), 0.007843, (128, 128), 127.5
97
+ # )
98
+ # net.setInput(blob)
99
+ # output = net.forward()
100
+
101
+ # h, w = image.shape[:2]
102
+
103
+ # # Convert the output array into a structured form.
104
+ # output = output.squeeze() # (1, 1, N, 7) -> (N, 7)
105
+ # output = output[output[:, 2] >= score_threshold]
106
+ # detections = [
107
+ # Detection(
108
+ # class_id=int(detection[1]),
109
+ # label=CLASSES[int(detection[1])],
110
+ # score=float(detection[2]),
111
+ # box=(detection[3:7] * np.array([w, h, w, h])),
112
+ # )
113
+ # for detection in output
114
+ # ]
115
+
116
+ # # Render bounding boxes and captions
117
+ # for detection in detections:
118
+ # caption = f"{detection.label}: {round(detection.score * 100, 2)}%"
119
+ # color = COLORS[detection.class_id]
120
+ # xmin, ymin, xmax, ymax = detection.box.astype("int")
121
+
122
+ # cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
123
+ # cv2.putText(
124
+ # image,
125
+ # caption,
126
+ # (xmin, ymin - 15 if ymin - 15 > 15 else ymin + 15),
127
+ # cv2.FONT_HERSHEY_SIMPLEX,
128
+ # 0.5,
129
+ # color,
130
+ # 2,
131
+ # )
132
+
133
+ result_queue.put([]) #detections)
134
 
135
  return av.VideoFrame.from_ndarray(image, format="bgr24")
136