Update app.py
Browse files
app.py
CHANGED
@@ -3,65 +3,166 @@ import os
|
|
3 |
os.environ['TWILIO_ACCOUNT_SID'] = 'AC9f1e8d20a3c92c12340cf1cb543dfc45'
|
4 |
os.environ['TWILIO_AUTH_TOKEN'] = '78b931e178545a8d22c33afae4c1b23c'
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import av
|
7 |
import cv2
|
|
|
8 |
import streamlit as st
|
9 |
from streamlit_webrtc import WebRtcMode, webrtc_streamer
|
10 |
|
|
|
11 |
from sample_utils.turn import get_ice_servers
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
2,
|
37 |
)
|
38 |
-
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
|
39 |
|
40 |
-
|
41 |
-
img = cv2.bitwise_and(img_color, img_edges)
|
42 |
-
elif _type == "edges":
|
43 |
-
# perform edge detection
|
44 |
-
img = cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR)
|
45 |
-
elif _type == "rotate":
|
46 |
-
# rotate image
|
47 |
-
rows, cols, _ = img.shape
|
48 |
-
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), frame.time * 45, 1)
|
49 |
-
img = cv2.warpAffine(img, M, (cols, rows))
|
50 |
|
51 |
-
return av.VideoFrame.from_ndarray(
|
52 |
|
53 |
|
54 |
-
webrtc_streamer(
|
55 |
-
key="
|
56 |
mode=WebRtcMode.SENDRECV,
|
57 |
rtc_configuration={"iceServers": get_ice_servers()},
|
58 |
-
video_frame_callback=
|
59 |
media_stream_constraints={"video": True, "audio": False},
|
60 |
async_processing=True,
|
61 |
)
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
st.markdown(
|
64 |
-
"This demo
|
65 |
-
"https://github.com/
|
66 |
"Many thanks to the project."
|
67 |
)
|
|
|
3 |
os.environ['TWILIO_ACCOUNT_SID'] = 'AC9f1e8d20a3c92c12340cf1cb543dfc45'
|
4 |
os.environ['TWILIO_AUTH_TOKEN'] = '78b931e178545a8d22c33afae4c1b23c'
|
5 |
|
6 |
+
"""Object detection demo with MobileNet SSD.
|
7 |
+
This model and code are based on
|
8 |
+
https://github.com/robmarkcole/object-detection-app
|
9 |
+
"""
|
10 |
+
|
11 |
+
import logging
|
12 |
+
import queue
|
13 |
+
from pathlib import Path
|
14 |
+
from typing import List, NamedTuple
|
15 |
+
|
16 |
import av
|
17 |
import cv2
|
18 |
+
import numpy as np
|
19 |
import streamlit as st
|
20 |
from streamlit_webrtc import WebRtcMode, webrtc_streamer
|
21 |
|
22 |
+
from sample_utils.download import download_file
|
23 |
from sample_utils.turn import get_ice_servers
|
24 |
|
25 |
+
HERE = Path(__file__).parent
|
26 |
+
ROOT = HERE.parent
|
27 |
+
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
MODEL_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.caffemodel" # noqa: E501
|
32 |
+
MODEL_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.caffemodel"
|
33 |
+
PROTOTXT_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.prototxt.txt" # noqa: E501
|
34 |
+
PROTOTXT_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.prototxt.txt"
|
35 |
+
|
36 |
+
CLASSES = [
|
37 |
+
"background",
|
38 |
+
"aeroplane",
|
39 |
+
"bicycle",
|
40 |
+
"bird",
|
41 |
+
"boat",
|
42 |
+
"bottle",
|
43 |
+
"bus",
|
44 |
+
"car",
|
45 |
+
"cat",
|
46 |
+
"chair",
|
47 |
+
"cow",
|
48 |
+
"diningtable",
|
49 |
+
"dog",
|
50 |
+
"horse",
|
51 |
+
"motorbike",
|
52 |
+
"person",
|
53 |
+
"pottedplant",
|
54 |
+
"sheep",
|
55 |
+
"sofa",
|
56 |
+
"train",
|
57 |
+
"tvmonitor",
|
58 |
+
]
|
59 |
+
|
60 |
+
|
61 |
+
class Detection(NamedTuple):
|
62 |
+
class_id: int
|
63 |
+
label: str
|
64 |
+
score: float
|
65 |
+
box: np.ndarray
|
66 |
+
|
67 |
+
|
68 |
+
@st.cache_resource # type: ignore
|
69 |
+
def generate_label_colors():
|
70 |
+
return np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
71 |
+
|
72 |
+
|
73 |
+
COLORS = generate_label_colors()
|
74 |
+
|
75 |
+
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564)
|
76 |
+
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353)
|
77 |
+
|
78 |
+
|
79 |
+
# Session-specific caching
|
80 |
+
cache_key = "object_detection_dnn"
|
81 |
+
if cache_key in st.session_state:
|
82 |
+
net = st.session_state[cache_key]
|
83 |
+
else:
|
84 |
+
net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH))
|
85 |
+
st.session_state[cache_key] = net
|
86 |
+
|
87 |
+
score_threshold = st.slider("Score threshold", 0.0, 1.0, 0.5, 0.05)
|
88 |
+
|
89 |
+
# NOTE: The callback will be called in another thread,
|
90 |
+
# so use a queue here for thread-safety to pass the data
|
91 |
+
# from inside to outside the callback.
|
92 |
+
# TODO: A general-purpose shared state object may be more useful.
|
93 |
+
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
|
94 |
+
|
95 |
+
|
96 |
+
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
|
97 |
+
image = frame.to_ndarray(format="bgr24")
|
98 |
+
|
99 |
+
# Run inference
|
100 |
+
blob = cv2.dnn.blobFromImage(
|
101 |
+
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
|
102 |
+
)
|
103 |
+
net.setInput(blob)
|
104 |
+
output = net.forward()
|
105 |
+
|
106 |
+
h, w = image.shape[:2]
|
107 |
+
|
108 |
+
# Convert the output array into a structured form.
|
109 |
+
output = output.squeeze() # (1, 1, N, 7) -> (N, 7)
|
110 |
+
output = output[output[:, 2] >= score_threshold]
|
111 |
+
detections = [
|
112 |
+
Detection(
|
113 |
+
class_id=int(detection[1]),
|
114 |
+
label=CLASSES[int(detection[1])],
|
115 |
+
score=float(detection[2]),
|
116 |
+
box=(detection[3:7] * np.array([w, h, w, h])),
|
117 |
+
)
|
118 |
+
for detection in output
|
119 |
+
]
|
120 |
+
|
121 |
+
# Render bounding boxes and captions
|
122 |
+
for detection in detections:
|
123 |
+
caption = f"{detection.label}: {round(detection.score * 100, 2)}%"
|
124 |
+
color = COLORS[detection.class_id]
|
125 |
+
xmin, ymin, xmax, ymax = detection.box.astype("int")
|
126 |
+
|
127 |
+
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
|
128 |
+
cv2.putText(
|
129 |
+
image,
|
130 |
+
caption,
|
131 |
+
(xmin, ymin - 15 if ymin - 15 > 15 else ymin + 15),
|
132 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
133 |
+
0.5,
|
134 |
+
color,
|
135 |
2,
|
136 |
)
|
|
|
137 |
|
138 |
+
result_queue.put(detections)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
+
return av.VideoFrame.from_ndarray(image, format="bgr24")
|
141 |
|
142 |
|
143 |
+
webrtc_ctx = webrtc_streamer(
|
144 |
+
key="object-detection",
|
145 |
mode=WebRtcMode.SENDRECV,
|
146 |
rtc_configuration={"iceServers": get_ice_servers()},
|
147 |
+
video_frame_callback=video_frame_callback,
|
148 |
media_stream_constraints={"video": True, "audio": False},
|
149 |
async_processing=True,
|
150 |
)
|
151 |
|
152 |
+
if st.checkbox("Show the detected labels", value=True):
|
153 |
+
if webrtc_ctx.state.playing:
|
154 |
+
labels_placeholder = st.empty()
|
155 |
+
# NOTE: The video transformation with object detection and
|
156 |
+
# this loop displaying the result labels are running
|
157 |
+
# in different threads asynchronously.
|
158 |
+
# Then the rendered video frames and the labels displayed here
|
159 |
+
# are not strictly synchronized.
|
160 |
+
while True:
|
161 |
+
result = result_queue.get()
|
162 |
+
labels_placeholder.table(result)
|
163 |
+
|
164 |
st.markdown(
|
165 |
+
"This demo uses a model and code from "
|
166 |
+
"https://github.com/robmarkcole/object-detection-app. "
|
167 |
"Many thanks to the project."
|
168 |
)
|