""" Emotion Detection: Model from: https://github.com/onnx/models/blob/main/vision/body_analysis/emotion_ferplus/model/emotion-ferplus-8.onnx Model name: emotion-ferplus-8.onnx """ import logging import queue from pathlib import Path from typing import List, NamedTuple import cv2 import numpy as np import time import os from cv2 import dnn from math import ceil import av import streamlit as st from streamlit_webrtc import WebRtcMode, webrtc_streamer from sample_utils.download import download_file from sample_utils.turn import get_ice_servers HERE = Path(__file__).parent ROOT = HERE.parent logger = logging.getLogger(__name__) ONNX_MODEL_URL = "https://github.com/spmallick/learnopencv/raw/master/Facial-Emotion-Recognition/emotion-ferplus-8.onnx" ONNX_MODEL_LOCAL_PATH = ROOT / "./emotion-ferplus-8.onnx" CAFFE_MODEL_URL = "https://github.com/spmallick/learnopencv/raw/master/Facial-Emotion-Recognition/RFB-320/RFB-320.caffemodel" # noqa: E501 CAFFE_MODEL_LOCAL_PATH = ROOT / "./RFB-320/RFB-320.caffemodel" PROTOTXT_URL = "https://github.com/spmallick/learnopencv/raw/master/Facial-Emotion-Recognition/RFB-320/RFB-320.prototxt" # noqa: E501 PROTOTXT_LOCAL_PATH = ROOT / "./RFB-320/RFB-320.prototxt.txt" download_file(CAFFE_MODEL_URL, CAFFE_MODEL_LOCAL_PATH) #, expected_size=23147564) download_file(ONNX_MODEL_URL, ONNX_MODEL_LOCAL_PATH) #, expected_size=23147564) download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH) #, expected_size=29353) # Session-specific caching onnx_cache_key = "emotion_dnn" caffe_cache_key = "face_detection_dnn" if caffe_cache_key in st.session_state and onnx_cache_key in st.session_state: model = st.session_state[onnx_cache_key] net = st.session_state[caffe_cache_key] else: # Read ONNX model model = 'onnx_model.onnx' model = cv2.dnn.readNetFromONNX(str(ONNX_MODEL_LOCAL_PATH)) st.session_state[onnx_cache_key] = model # Read the Caffe face detector. net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(CAFFE_MODEL_LOCAL_PATH)) st.session_state[caffe_cache_key] = net ######################################## image_mean = np.array([127, 127, 127]) image_std = 128.0 iou_threshold = 0.3 center_variance = 0.1 size_variance = 0.2 min_boxes = [ [10.0, 16.0, 24.0], [32.0, 48.0], [64.0, 96.0], [128.0, 192.0, 256.0] ] strides = [8.0, 16.0, 32.0, 64.0] threshold = 0.5 emotion_dict = { 0: 'neutral', 1: 'happiness', 2: 'surprise', 3: 'sadness', 4: 'anger', 5: 'disgust', 6: 'fear' } ######################################## def define_img_size(image_size): shrinkage_list = [] feature_map_w_h_list = [] for size in image_size: feature_map = [int(ceil(size / stride)) for stride in strides] feature_map_w_h_list.append(feature_map) for i in range(0, len(image_size)): shrinkage_list.append(strides) priors = generate_priors( feature_map_w_h_list, shrinkage_list, image_size, min_boxes ) return priors def generate_priors( feature_map_list, shrinkage_list, image_size, min_boxes ): priors = [] for index in range(0, len(feature_map_list[0])): scale_w = image_size[0] / shrinkage_list[0][index] scale_h = image_size[1] / shrinkage_list[1][index] for j in range(0, feature_map_list[1][index]): for i in range(0, feature_map_list[0][index]): x_center = (i + 0.5) / scale_w y_center = (j + 0.5) / scale_h for min_box in min_boxes[index]: w = min_box / image_size[0] h = min_box / image_size[1] priors.append([ x_center, y_center, w, h ]) print("priors nums:{}".format(len(priors))) return np.clip(priors, 0.0, 1.0) def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200): scores = box_scores[:, -1] boxes = box_scores[:, :-1] picked = [] indexes = np.argsort(scores) indexes = indexes[-candidate_size:] while len(indexes) > 0: current = indexes[-1] picked.append(current) if 0 < top_k == len(picked) or len(indexes) == 1: break current_box = boxes[current, :] indexes = indexes[:-1] rest_boxes = boxes[indexes, :] iou = iou_of( rest_boxes, np.expand_dims(current_box, axis=0), ) indexes = indexes[iou <= iou_threshold] return box_scores[picked, :] def area_of(left_top, right_bottom): hw = np.clip(right_bottom - left_top, 0.0, None) return hw[..., 0] * hw[..., 1] def iou_of(boxes0, boxes1, eps=1e-5): overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2]) overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:]) overlap_area = area_of(overlap_left_top, overlap_right_bottom) area0 = area_of(boxes0[..., :2], boxes0[..., 2:]) area1 = area_of(boxes1[..., :2], boxes1[..., 2:]) return overlap_area / (area0 + area1 - overlap_area + eps) def predict( width, height, confidences, boxes, prob_threshold, iou_threshold=0.3, top_k=-1 ): boxes = boxes[0] confidences = confidences[0] picked_box_probs = [] picked_labels = [] for class_index in range(1, confidences.shape[1]): probs = confidences[:, class_index] mask = probs > prob_threshold probs = probs[mask] if probs.shape[0] == 0: continue subset_boxes = boxes[mask, :] box_probs = np.concatenate( [subset_boxes, probs.reshape(-1, 1)], axis=1 ) box_probs = hard_nms(box_probs, iou_threshold=iou_threshold, top_k=top_k, ) picked_box_probs.append(box_probs) picked_labels.extend([class_index] * box_probs.shape[0]) if not picked_box_probs: return np.array([]), np.array([]), np.array([]) picked_box_probs = np.concatenate(picked_box_probs) picked_box_probs[:, 0] *= width picked_box_probs[:, 1] *= height picked_box_probs[:, 2] *= width picked_box_probs[:, 3] *= height return ( picked_box_probs[:, :4].astype(np.int32), np.array(picked_labels), picked_box_probs[:, 4] ) def convert_locations_to_boxes(locations, priors, center_variance, size_variance): if len(priors.shape) + 1 == len(locations.shape): priors = np.expand_dims(priors, 0) return np.concatenate([ locations[..., :2] * center_variance * priors[..., 2:] + priors[..., :2], np.exp(locations[..., 2:] * size_variance) * priors[..., 2:] ], axis=len(locations.shape) - 1) def center_form_to_corner_form(locations): return np.concatenate( [locations[..., :2] - locations[..., 2:] / 2, locations[..., :2] + locations[..., 2:] / 2], len(locations.shape) - 1 ) # def FER_live_cam(): def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame: frame = frame.to_ndarray(format="bgr24") # cap = cv2.VideoCapture('video3.mp4') # cap = cv2.VideoCapture(0) # frame_width = int(cap.get(3)) # frame_height = int(cap.get(4)) # size = (frame_width, frame_height) # result = cv2.VideoWriter('infer2-test.avi', # cv2.VideoWriter_fourcc(*'MJPG'), # 10, size) # Read ONNX model # model = 'onnx_model.onnx' # model = cv2.dnn.readNetFromONNX('emotion-ferplus-8.onnx') # # Read the Caffe face detector. # model_path = 'RFB-320/RFB-320.caffemodel' # proto_path = 'RFB-320/RFB-320.prototxt' # net = dnn.readNetFromCaffe(proto_path, model_path) input_size = [320, 240] width = input_size[0] height = input_size[1] priors = define_img_size(input_size) # while cap.isOpened(): # ret, frame = cap.read() # if ret: img_ori = frame #print("frame size: ", frame.shape) rect = cv2.resize(img_ori, (width, height)) rect = cv2.cvtColor(rect, cv2.COLOR_BGR2RGB) net.setInput(dnn.blobFromImage(rect, 1 / image_std, (width, height), 127)) start_time = time.time() boxes, scores = net.forward(["boxes", "scores"]) boxes = np.expand_dims(np.reshape(boxes, (-1, 4)), axis=0) scores = np.expand_dims(np.reshape(scores, (-1, 2)), axis=0) boxes = convert_locations_to_boxes(boxes, priors, center_variance, size_variance) boxes = center_form_to_corner_form(boxes) boxes, labels, probs = predict( img_ori.shape[1], img_ori.shape[0], scores, boxes, threshold ) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) for (x1, y1, x2, y2) in boxes: w = x2 - x1 h = y2 - y1 cv2.rectangle(frame, (x1,y1), (x2, y2), (255,0,0), 2) resize_frame = cv2.resize( gray[y1:y1 + h, x1:x1 + w], (64, 64) ) resize_frame = resize_frame.reshape(1, 1, 64, 64) model.setInput(resize_frame) output = model.forward() end_time = time.time() fps = 1 / (end_time - start_time) print(f"FPS: {fps:.1f}") pred = emotion_dict[list(output[0]).index(max(output[0]))] cv2.rectangle( img_ori, (x1, y1), (x2, y2), (215, 5, 247), 2, lineType=cv2.LINE_AA ) cv2.putText( frame, pred, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (215, 5, 247), 2, lineType=cv2.LINE_AA ) # result.write(frame) # cv2.imshow('frame', frame) # if cv2.waitKey(1) & 0xFF == ord('q'): # break # else: # break # cap.release() # result.release() # cv2.destroyAllWindows() return av.VideoFrame.from_ndarray(frame, format="bgr24") if __name__ == "__main__": # FER_live_cam() webrtc_ctx = webrtc_streamer( key="face-emotion-recognition", mode=WebRtcMode.SENDRECV, rtc_configuration={"iceServers": get_ice_servers()}, video_frame_callback=video_frame_callback, media_stream_constraints={"video": True, "audio": False}, async_processing=True, ) # if st.checkbox("Show the detected labels", value=True): # if webrtc_ctx.state.playing: # labels_placeholder = st.empty() # # NOTE: The video transformation with object detection and # # this loop displaying the result labels are running # # in different threads asynchronously. # # Then the rendered video frames and the labels displayed here # # are not strictly synchronized. st.markdown( "This demo uses a model and code from " "https://github.com/spmallick/learnopncv/Facial-Emotion-Recognition. " "Many thanks to the project." )