sadimanna commited on
Commit
bd7ea94
·
1 Parent(s): acbe157

updated app.py

Browse files
Files changed (2) hide show
  1. README.md +1 -2
  2. app.py +2 -4
README.md CHANGED
@@ -10,5 +10,4 @@ pinned: false
10
  license: bsd-3-clause-clear
11
  ---
12
 
13
- # MobileNet-SSD Object Detection Demo with Web App using Hugging Face Spaces
14
- Setting up a Hugging Face Spaces Demo using Streamlit
 
10
  license: bsd-3-clause-clear
11
  ---
12
 
13
+ # Face Emotion Recognition Demo with Web App using Hugging Face Spaces
 
app.py CHANGED
@@ -49,7 +49,7 @@ if caffe_cache_key in st.session_state and onnx_cache_key in st.session_state:
49
  else:
50
  # Read ONNX model
51
  model = 'onnx_model.onnx'
52
- model = cv2.dnn.readNetFromONNX('emotion-ferplus-8.onnx')
53
  st.session_state[onnx_cache_key] = model
54
  # Read the Caffe face detector.
55
  net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(CAFFE_MODEL_LOCAL_PATH))
@@ -259,9 +259,7 @@ def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
259
  boxes, scores = net.forward(["boxes", "scores"])
260
  boxes = np.expand_dims(np.reshape(boxes, (-1, 4)), axis=0)
261
  scores = np.expand_dims(np.reshape(scores, (-1, 2)), axis=0)
262
- boxes = convert_locations_to_boxes(
263
- boxes, priors, center_variance, size_variance
264
- )
265
  boxes = center_form_to_corner_form(boxes)
266
  boxes, labels, probs = predict(
267
  img_ori.shape[1],
 
49
  else:
50
  # Read ONNX model
51
  model = 'onnx_model.onnx'
52
+ model = cv2.dnn.readNetFromONNX(str(ONNX_MODEL_LOCAL_PATH))
53
  st.session_state[onnx_cache_key] = model
54
  # Read the Caffe face detector.
55
  net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(CAFFE_MODEL_LOCAL_PATH))
 
259
  boxes, scores = net.forward(["boxes", "scores"])
260
  boxes = np.expand_dims(np.reshape(boxes, (-1, 4)), axis=0)
261
  scores = np.expand_dims(np.reshape(scores, (-1, 2)), axis=0)
262
+ boxes = convert_locations_to_boxes(boxes, priors, center_variance, size_variance)
 
 
263
  boxes = center_form_to_corner_form(boxes)
264
  boxes, labels, probs = predict(
265
  img_ori.shape[1],