sadimanna's picture
updated app.py
058c69c
"""
Emotion Detection:
Model from: https://github.com/onnx/models/blob/main/vision/body_analysis/emotion_ferplus/model/emotion-ferplus-8.onnx
Model name: emotion-ferplus-8.onnx
"""
import logging
import queue
from pathlib import Path
from typing import List, NamedTuple
import cv2
import numpy as np
import time
import os
from cv2 import dnn
from math import ceil
import av
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.download import download_file
from sample_utils.turn import get_ice_servers
HERE = Path(__file__).parent
ROOT = HERE.parent
logger = logging.getLogger(__name__)
ONNX_MODEL_URL = "https://github.com/spmallick/learnopencv/raw/master/Facial-Emotion-Recognition/emotion-ferplus-8.onnx"
ONNX_MODEL_LOCAL_PATH = ROOT / "./emotion-ferplus-8.onnx"
CAFFE_MODEL_URL = "https://github.com/spmallick/learnopencv/raw/master/Facial-Emotion-Recognition/RFB-320/RFB-320.caffemodel" # noqa: E501
CAFFE_MODEL_LOCAL_PATH = ROOT / "./RFB-320/RFB-320.caffemodel"
PROTOTXT_URL = "https://github.com/spmallick/learnopencv/raw/master/Facial-Emotion-Recognition/RFB-320/RFB-320.prototxt" # noqa: E501
PROTOTXT_LOCAL_PATH = ROOT / "./RFB-320/RFB-320.prototxt.txt"
download_file(CAFFE_MODEL_URL, CAFFE_MODEL_LOCAL_PATH) #, expected_size=23147564)
download_file(ONNX_MODEL_URL, ONNX_MODEL_LOCAL_PATH) #, expected_size=23147564)
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH) #, expected_size=29353)
# Session-specific caching
onnx_cache_key = "emotion_dnn"
caffe_cache_key = "face_detection_dnn"
if caffe_cache_key in st.session_state and onnx_cache_key in st.session_state:
model = st.session_state[onnx_cache_key]
net = st.session_state[caffe_cache_key]
else:
# Read ONNX model
model = 'onnx_model.onnx'
model = cv2.dnn.readNetFromONNX(str(ONNX_MODEL_LOCAL_PATH))
st.session_state[onnx_cache_key] = model
# Read the Caffe face detector.
net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(CAFFE_MODEL_LOCAL_PATH))
st.session_state[caffe_cache_key] = net
########################################
image_mean = np.array([127, 127, 127])
image_std = 128.0
iou_threshold = 0.3
center_variance = 0.1
size_variance = 0.2
min_boxes = [
[10.0, 16.0, 24.0],
[32.0, 48.0],
[64.0, 96.0],
[128.0, 192.0, 256.0]
]
strides = [8.0, 16.0, 32.0, 64.0]
threshold = 0.5
emotion_dict = {
0: 'neutral',
1: 'happiness',
2: 'surprise',
3: 'sadness',
4: 'anger',
5: 'disgust',
6: 'fear'
}
########################################
def define_img_size(image_size):
shrinkage_list = []
feature_map_w_h_list = []
for size in image_size:
feature_map = [int(ceil(size / stride)) for stride in strides]
feature_map_w_h_list.append(feature_map)
for i in range(0, len(image_size)):
shrinkage_list.append(strides)
priors = generate_priors(
feature_map_w_h_list, shrinkage_list, image_size, min_boxes
)
return priors
def generate_priors(
feature_map_list, shrinkage_list, image_size, min_boxes
):
priors = []
for index in range(0, len(feature_map_list[0])):
scale_w = image_size[0] / shrinkage_list[0][index]
scale_h = image_size[1] / shrinkage_list[1][index]
for j in range(0, feature_map_list[1][index]):
for i in range(0, feature_map_list[0][index]):
x_center = (i + 0.5) / scale_w
y_center = (j + 0.5) / scale_h
for min_box in min_boxes[index]:
w = min_box / image_size[0]
h = min_box / image_size[1]
priors.append([
x_center,
y_center,
w,
h
])
print("priors nums:{}".format(len(priors)))
return np.clip(priors, 0.0, 1.0)
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
scores = box_scores[:, -1]
boxes = box_scores[:, :-1]
picked = []
indexes = np.argsort(scores)
indexes = indexes[-candidate_size:]
while len(indexes) > 0:
current = indexes[-1]
picked.append(current)
if 0 < top_k == len(picked) or len(indexes) == 1:
break
current_box = boxes[current, :]
indexes = indexes[:-1]
rest_boxes = boxes[indexes, :]
iou = iou_of(
rest_boxes,
np.expand_dims(current_box, axis=0),
)
indexes = indexes[iou <= iou_threshold]
return box_scores[picked, :]
def area_of(left_top, right_bottom):
hw = np.clip(right_bottom - left_top, 0.0, None)
return hw[..., 0] * hw[..., 1]
def iou_of(boxes0, boxes1, eps=1e-5):
overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])
overlap_area = area_of(overlap_left_top, overlap_right_bottom)
area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
return overlap_area / (area0 + area1 - overlap_area + eps)
def predict(
width,
height,
confidences,
boxes,
prob_threshold,
iou_threshold=0.3,
top_k=-1
):
boxes = boxes[0]
confidences = confidences[0]
picked_box_probs = []
picked_labels = []
for class_index in range(1, confidences.shape[1]):
probs = confidences[:, class_index]
mask = probs > prob_threshold
probs = probs[mask]
if probs.shape[0] == 0:
continue
subset_boxes = boxes[mask, :]
box_probs = np.concatenate(
[subset_boxes, probs.reshape(-1, 1)], axis=1
)
box_probs = hard_nms(box_probs,
iou_threshold=iou_threshold,
top_k=top_k,
)
picked_box_probs.append(box_probs)
picked_labels.extend([class_index] * box_probs.shape[0])
if not picked_box_probs:
return np.array([]), np.array([]), np.array([])
picked_box_probs = np.concatenate(picked_box_probs)
picked_box_probs[:, 0] *= width
picked_box_probs[:, 1] *= height
picked_box_probs[:, 2] *= width
picked_box_probs[:, 3] *= height
return (
picked_box_probs[:, :4].astype(np.int32),
np.array(picked_labels),
picked_box_probs[:, 4]
)
def convert_locations_to_boxes(locations, priors, center_variance,
size_variance):
if len(priors.shape) + 1 == len(locations.shape):
priors = np.expand_dims(priors, 0)
return np.concatenate([
locations[..., :2] * center_variance * priors[..., 2:] + priors[..., :2],
np.exp(locations[..., 2:] * size_variance) * priors[..., 2:]
], axis=len(locations.shape) - 1)
def center_form_to_corner_form(locations):
return np.concatenate(
[locations[..., :2] - locations[..., 2:] / 2,
locations[..., :2] + locations[..., 2:] / 2],
len(locations.shape) - 1
)
# def FER_live_cam():
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
frame = frame.to_ndarray(format="bgr24")
# cap = cv2.VideoCapture('video3.mp4')
# cap = cv2.VideoCapture(0)
# frame_width = int(cap.get(3))
# frame_height = int(cap.get(4))
# size = (frame_width, frame_height)
# result = cv2.VideoWriter('infer2-test.avi',
# cv2.VideoWriter_fourcc(*'MJPG'),
# 10, size)
# Read ONNX model
# model = 'onnx_model.onnx'
# model = cv2.dnn.readNetFromONNX('emotion-ferplus-8.onnx')
# # Read the Caffe face detector.
# model_path = 'RFB-320/RFB-320.caffemodel'
# proto_path = 'RFB-320/RFB-320.prototxt'
# net = dnn.readNetFromCaffe(proto_path, model_path)
input_size = [320, 240]
width = input_size[0]
height = input_size[1]
priors = define_img_size(input_size)
# while cap.isOpened():
# ret, frame = cap.read()
# if ret:
img_ori = frame
#print("frame size: ", frame.shape)
rect = cv2.resize(img_ori, (width, height))
rect = cv2.cvtColor(rect, cv2.COLOR_BGR2RGB)
net.setInput(dnn.blobFromImage(rect, 1 / image_std, (width, height), 127))
start_time = time.time()
boxes, scores = net.forward(["boxes", "scores"])
boxes = np.expand_dims(np.reshape(boxes, (-1, 4)), axis=0)
scores = np.expand_dims(np.reshape(scores, (-1, 2)), axis=0)
boxes = convert_locations_to_boxes(boxes, priors, center_variance, size_variance)
boxes = center_form_to_corner_form(boxes)
boxes, labels, probs = predict(
img_ori.shape[1],
img_ori.shape[0],
scores,
boxes,
threshold
)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
for (x1, y1, x2, y2) in boxes:
w = x2 - x1
h = y2 - y1
cv2.rectangle(frame, (x1,y1), (x2, y2), (255,0,0), 2)
resize_frame = cv2.resize(
gray[y1:y1 + h, x1:x1 + w], (64, 64)
)
resize_frame = resize_frame.reshape(1, 1, 64, 64)
model.setInput(resize_frame)
output = model.forward()
end_time = time.time()
fps = 1 / (end_time - start_time)
print(f"FPS: {fps:.1f}")
pred = emotion_dict[list(output[0]).index(max(output[0]))]
cv2.rectangle(
img_ori,
(x1, y1),
(x2, y2),
(215, 5, 247),
2,
lineType=cv2.LINE_AA
)
cv2.putText(
frame,
pred,
(x1, y1-10),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(215, 5, 247),
2,
lineType=cv2.LINE_AA
)
# result.write(frame)
# cv2.imshow('frame', frame)
# if cv2.waitKey(1) & 0xFF == ord('q'):
# break
# else:
# break
# cap.release()
# result.release()
# cv2.destroyAllWindows()
return av.VideoFrame.from_ndarray(frame, format="bgr24")
if __name__ == "__main__":
# FER_live_cam()
webrtc_ctx = webrtc_streamer(
key="face-emotion-recognition",
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": get_ice_servers()},
video_frame_callback=video_frame_callback,
media_stream_constraints={"video": True, "audio": False},
async_processing=True,
)
# if st.checkbox("Show the detected labels", value=True):
# if webrtc_ctx.state.playing:
# labels_placeholder = st.empty()
# # NOTE: The video transformation with object detection and
# # this loop displaying the result labels are running
# # in different threads asynchronously.
# # Then the rendered video frames and the labels displayed here
# # are not strictly synchronized.
st.markdown(
"This demo uses a model and code from "
"https://github.com/spmallick/learnopncv/Facial-Emotion-Recognition. "
"Many thanks to the project."
)