Spaces:
Paused
Paused
updated app.py
Browse files- app.py +303 -0
- sample_utils/__init__.py +0 -0
- sample_utils/download.py +50 -0
- sample_utils/turn.py +39 -0
app.py
ADDED
|
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Emotion Detection:
|
| 3 |
+
Model from: https://github.com/onnx/models/blob/main/vision/body_analysis/emotion_ferplus/model/emotion-ferplus-8.onnx
|
| 4 |
+
Model name: emotion-ferplus-8.onnx
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import cv2
|
| 8 |
+
import numpy as np
|
| 9 |
+
import time
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
from cv2 import dnn
|
| 13 |
+
from math import ceil
|
| 14 |
+
|
| 15 |
+
import logging
|
| 16 |
+
import queue
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
from typing import List, NamedTuple
|
| 19 |
+
|
| 20 |
+
import av
|
| 21 |
+
import streamlit as st
|
| 22 |
+
from streamlit_webrtc import WebRtcMode, webrtc_streamer
|
| 23 |
+
|
| 24 |
+
from sample_utils.download import download_file
|
| 25 |
+
from sample_utils.turn import get_ice_servers
|
| 26 |
+
|
| 27 |
+
HERE = Path(__file__).parent
|
| 28 |
+
ROOT = HERE.parent
|
| 29 |
+
|
| 30 |
+
logger = logging.getLogger(__name__)
|
| 31 |
+
|
| 32 |
+
ONNX_MODEL_URL = "https://github.com/spmallick/learnopencv/raw/master/Face-Emotion-Recognition/emotion-ferplus-8.onnx" # noqa: E501
|
| 33 |
+
ONNX_MODEL_LOCAL_PATH = ROOT / "./emotion-ferplus-8.onnx"
|
| 34 |
+
CAFFE_MODEL_URL = "https://github.com/spmallick/learnopencv/raw/master/Face-Emotion-Recognition/RFB-320/RFB-320.caffemodel" # noqa: E501
|
| 35 |
+
CAFFE_MODEL_LOCAL_PATH = ROOT / "./RFB-320/RFB-320.caffemodel"
|
| 36 |
+
PROTOTXT_URL = "https://github.com/spmallick/learnopencv/raw/master/Facial-Emotion-Recognition/RFB-320/RFB-320.prototxt" # noqa: E501
|
| 37 |
+
PROTOTXT_LOCAL_PATH = ROOT / "./RFB-320/RFB-320.prototxt.txt"
|
| 38 |
+
|
| 39 |
+
download_file(ONNX_MODEL_URL, ONNX_MODEL_LOCAL_PATH, expected_size=None)
|
| 40 |
+
download_file(CAFFE_MODEL_URL, CAFFE_MODEL_LOCAL_PATH, expected_size=None)
|
| 41 |
+
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=None)
|
| 42 |
+
|
| 43 |
+
# Session-specific caching
|
| 44 |
+
onnx_cache_key = "onnx_model"
|
| 45 |
+
caffe_cache_key = "caffe_model"
|
| 46 |
+
|
| 47 |
+
if onnx_cache_key in st.session_state and caffe_cache_key in st.session_state:
|
| 48 |
+
model = st.session_state[onnx_cache_key]
|
| 49 |
+
net = st.session_state[caffe_cache_key]
|
| 50 |
+
else:
|
| 51 |
+
model = cv2.dnn.readNetFromONNX(str(ONNX_MODEL_LOCAL_PATH))
|
| 52 |
+
net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(CAFFE_MODEL_LOCAL_PATH))
|
| 53 |
+
st.session_state[onnx_cache_key] = model
|
| 54 |
+
st.session_state[caffe_cache_key] = net
|
| 55 |
+
|
| 56 |
+
image_mean = np.array([127, 127, 127])
|
| 57 |
+
image_std = 128.0
|
| 58 |
+
iou_threshold = 0.3
|
| 59 |
+
center_variance = 0.1
|
| 60 |
+
size_variance = 0.2
|
| 61 |
+
min_boxes = [
|
| 62 |
+
[10.0, 16.0, 24.0],
|
| 63 |
+
[32.0, 48.0],
|
| 64 |
+
[64.0, 96.0],
|
| 65 |
+
[128.0, 192.0, 256.0]
|
| 66 |
+
]
|
| 67 |
+
strides = [8.0, 16.0, 32.0, 64.0]
|
| 68 |
+
threshold = 0.5
|
| 69 |
+
|
| 70 |
+
emotion_dict = {
|
| 71 |
+
0: 'neutral',
|
| 72 |
+
1: 'happiness',
|
| 73 |
+
2: 'surprise',
|
| 74 |
+
3: 'sadness',
|
| 75 |
+
4: 'anger',
|
| 76 |
+
5: 'disgust',
|
| 77 |
+
6: 'fear'
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
def define_img_size(image_size):
|
| 81 |
+
shrinkage_list = []
|
| 82 |
+
feature_map_w_h_list = []
|
| 83 |
+
for size in image_size:
|
| 84 |
+
feature_map = [int(ceil(size / stride)) for stride in strides]
|
| 85 |
+
feature_map_w_h_list.append(feature_map)
|
| 86 |
+
|
| 87 |
+
for i in range(0, len(image_size)):
|
| 88 |
+
shrinkage_list.append(strides)
|
| 89 |
+
priors = generate_priors(
|
| 90 |
+
feature_map_w_h_list, shrinkage_list, image_size, min_boxes
|
| 91 |
+
)
|
| 92 |
+
return priors
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def generate_priors(
|
| 96 |
+
feature_map_list, shrinkage_list, image_size, min_boxes
|
| 97 |
+
):
|
| 98 |
+
priors = []
|
| 99 |
+
for index in range(0, len(feature_map_list[0])):
|
| 100 |
+
scale_w = image_size[0] / shrinkage_list[0][index]
|
| 101 |
+
scale_h = image_size[1] / shrinkage_list[1][index]
|
| 102 |
+
for j in range(0, feature_map_list[1][index]):
|
| 103 |
+
for i in range(0, feature_map_list[0][index]):
|
| 104 |
+
x_center = (i + 0.5) / scale_w
|
| 105 |
+
y_center = (j + 0.5) / scale_h
|
| 106 |
+
|
| 107 |
+
for min_box in min_boxes[index]:
|
| 108 |
+
w = min_box / image_size[0]
|
| 109 |
+
h = min_box / image_size[1]
|
| 110 |
+
priors.append([
|
| 111 |
+
x_center,
|
| 112 |
+
y_center,
|
| 113 |
+
w,
|
| 114 |
+
h
|
| 115 |
+
])
|
| 116 |
+
print("priors nums:{}".format(len(priors)))
|
| 117 |
+
return np.clip(priors, 0.0, 1.0)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
|
| 121 |
+
scores = box_scores[:, -1]
|
| 122 |
+
boxes = box_scores[:, :-1]
|
| 123 |
+
picked = []
|
| 124 |
+
indexes = np.argsort(scores)
|
| 125 |
+
indexes = indexes[-candidate_size:]
|
| 126 |
+
while len(indexes) > 0:
|
| 127 |
+
current = indexes[-1]
|
| 128 |
+
picked.append(current)
|
| 129 |
+
if 0 < top_k == len(picked) or len(indexes) == 1:
|
| 130 |
+
break
|
| 131 |
+
current_box = boxes[current, :]
|
| 132 |
+
indexes = indexes[:-1]
|
| 133 |
+
rest_boxes = boxes[indexes, :]
|
| 134 |
+
iou = iou_of(
|
| 135 |
+
rest_boxes,
|
| 136 |
+
np.expand_dims(current_box, axis=0),
|
| 137 |
+
)
|
| 138 |
+
indexes = indexes[iou <= iou_threshold]
|
| 139 |
+
return box_scores[picked, :]
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def area_of(left_top, right_bottom):
|
| 143 |
+
hw = np.clip(right_bottom - left_top, 0.0, None)
|
| 144 |
+
return hw[..., 0] * hw[..., 1]
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def iou_of(boxes0, boxes1, eps=1e-5):
|
| 148 |
+
overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
|
| 149 |
+
overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])
|
| 150 |
+
|
| 151 |
+
overlap_area = area_of(overlap_left_top, overlap_right_bottom)
|
| 152 |
+
area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
|
| 153 |
+
area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
|
| 154 |
+
return overlap_area / (area0 + area1 - overlap_area + eps)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def predict(
|
| 158 |
+
width,
|
| 159 |
+
height,
|
| 160 |
+
confidences,
|
| 161 |
+
boxes,
|
| 162 |
+
prob_threshold,
|
| 163 |
+
iou_threshold=0.3,
|
| 164 |
+
top_k=-1
|
| 165 |
+
):
|
| 166 |
+
boxes = boxes[0]
|
| 167 |
+
confidences = confidences[0]
|
| 168 |
+
picked_box_probs = []
|
| 169 |
+
picked_labels = []
|
| 170 |
+
for class_index in range(1, confidences.shape[1]):
|
| 171 |
+
probs = confidences[:, class_index]
|
| 172 |
+
mask = probs > prob_threshold
|
| 173 |
+
probs = probs[mask]
|
| 174 |
+
if probs.shape[0] == 0:
|
| 175 |
+
continue
|
| 176 |
+
subset_boxes = boxes[mask, :]
|
| 177 |
+
box_probs = np.concatenate(
|
| 178 |
+
[subset_boxes, probs.reshape(-1, 1)], axis=1
|
| 179 |
+
)
|
| 180 |
+
box_probs = hard_nms(box_probs,
|
| 181 |
+
iou_threshold=iou_threshold,
|
| 182 |
+
top_k=top_k,
|
| 183 |
+
)
|
| 184 |
+
picked_box_probs.append(box_probs)
|
| 185 |
+
picked_labels.extend([class_index] * box_probs.shape[0])
|
| 186 |
+
if not picked_box_probs:
|
| 187 |
+
return np.array([]), np.array([]), np.array([])
|
| 188 |
+
picked_box_probs = np.concatenate(picked_box_probs)
|
| 189 |
+
picked_box_probs[:, 0] *= width
|
| 190 |
+
picked_box_probs[:, 1] *= height
|
| 191 |
+
picked_box_probs[:, 2] *= width
|
| 192 |
+
picked_box_probs[:, 3] *= height
|
| 193 |
+
return (
|
| 194 |
+
picked_box_probs[:, :4].astype(np.int32),
|
| 195 |
+
np.array(picked_labels),
|
| 196 |
+
picked_box_probs[:, 4]
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def convert_locations_to_boxes(locations, priors, center_variance,
|
| 201 |
+
size_variance):
|
| 202 |
+
if len(priors.shape) + 1 == len(locations.shape):
|
| 203 |
+
priors = np.expand_dims(priors, 0)
|
| 204 |
+
return np.concatenate([
|
| 205 |
+
locations[..., :2] * center_variance * priors[..., 2:] + priors[..., :2],
|
| 206 |
+
np.exp(locations[..., 2:] * size_variance) * priors[..., 2:]
|
| 207 |
+
], axis=len(locations.shape) - 1)
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def center_form_to_corner_form(locations):
|
| 211 |
+
return np.concatenate(
|
| 212 |
+
[locations[..., :2] - locations[..., 2:] / 2,
|
| 213 |
+
locations[..., :2] + locations[..., 2:] / 2],
|
| 214 |
+
len(locations.shape) - 1
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
|
| 219 |
+
|
| 220 |
+
frame = frame.to_ndarray(format="bgr24")
|
| 221 |
+
|
| 222 |
+
input_size = [320, 240]
|
| 223 |
+
width = input_size[0]
|
| 224 |
+
height = input_size[1]
|
| 225 |
+
priors = define_img_size(input_size)
|
| 226 |
+
|
| 227 |
+
img_ori = frame
|
| 228 |
+
#print("frame size: ", frame.shape)
|
| 229 |
+
rect = cv2.resize(img_ori, (width, height))
|
| 230 |
+
rect = cv2.cvtColor(rect, cv2.COLOR_BGR2RGB)
|
| 231 |
+
net.setInput(dnn.blobFromImage(
|
| 232 |
+
rect, 1 / image_std, (width, height), 127)
|
| 233 |
+
)
|
| 234 |
+
start_time = time.time()
|
| 235 |
+
boxes, scores = net.forward(["boxes", "scores"])
|
| 236 |
+
boxes = np.expand_dims(np.reshape(boxes, (-1, 4)), axis=0)
|
| 237 |
+
scores = np.expand_dims(np.reshape(scores, (-1, 2)), axis=0)
|
| 238 |
+
boxes = convert_locations_to_boxes(
|
| 239 |
+
boxes, priors, center_variance, size_variance
|
| 240 |
+
)
|
| 241 |
+
boxes = center_form_to_corner_form(boxes)
|
| 242 |
+
boxes, labels, probs = predict(
|
| 243 |
+
img_ori.shape[1],
|
| 244 |
+
img_ori.shape[0],
|
| 245 |
+
scores,
|
| 246 |
+
boxes,
|
| 247 |
+
threshold
|
| 248 |
+
)
|
| 249 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 250 |
+
for (x1, y1, x2, y2) in boxes:
|
| 251 |
+
w = x2 - x1
|
| 252 |
+
h = y2 - y1
|
| 253 |
+
cv2.rectangle(frame, (x1,y1), (x2, y2), (255,0,0), 2)
|
| 254 |
+
resize_frame = cv2.resize(
|
| 255 |
+
gray[y1:y1 + h, x1:x1 + w], (64, 64)
|
| 256 |
+
)
|
| 257 |
+
resize_frame = resize_frame.reshape(1, 1, 64, 64)
|
| 258 |
+
model.setInput(resize_frame)
|
| 259 |
+
output = model.forward()
|
| 260 |
+
end_time = time.time()
|
| 261 |
+
fps = 1 / (end_time - start_time)
|
| 262 |
+
print(f"FPS: {fps:.1f}")
|
| 263 |
+
pred = emotion_dict[list(output[0]).index(max(output[0]))]
|
| 264 |
+
cv2.rectangle(
|
| 265 |
+
img_ori,
|
| 266 |
+
(x1, y1),
|
| 267 |
+
(x2, y2),
|
| 268 |
+
(215, 5, 247),
|
| 269 |
+
2,
|
| 270 |
+
lineType=cv2.LINE_AA
|
| 271 |
+
)
|
| 272 |
+
cv2.putText(
|
| 273 |
+
frame,
|
| 274 |
+
pred,
|
| 275 |
+
(x1, y1-10),
|
| 276 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
| 277 |
+
0.8,
|
| 278 |
+
(215, 5, 247),
|
| 279 |
+
2,
|
| 280 |
+
lineType=cv2.LINE_AA
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
return av.VideoFrame.from_ndarray(frame, format="bgr24")
|
| 284 |
+
|
| 285 |
+
if __name__ == "__main__":
|
| 286 |
+
webrtc_ctx = webrtc_streamer(
|
| 287 |
+
key="object-detection",
|
| 288 |
+
mode=WebRtcMode.SENDRECV,
|
| 289 |
+
rtc_configuration={
|
| 290 |
+
"iceServers": get_ice_servers(),
|
| 291 |
+
"iceTransportPolicy": "relay",
|
| 292 |
+
},
|
| 293 |
+
video_frame_callback=video_frame_callback,
|
| 294 |
+
media_stream_constraints={"video": True, "audio": False},
|
| 295 |
+
async_processing=True,
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
st.markdown(
|
| 300 |
+
"This demo uses a model and code from "
|
| 301 |
+
"https://github.com/spmallick/learnopencv. "
|
| 302 |
+
"Many thanks to the project."
|
| 303 |
+
)
|
sample_utils/__init__.py
ADDED
|
File without changes
|
sample_utils/download.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import urllib.request
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import streamlit as st
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
# This code is based on https://github.com/streamlit/demo-self-driving/blob/230245391f2dda0cb464008195a470751c01770b/streamlit_app.py#L48 # noqa: E501
|
| 8 |
+
def download_file(url, download_to: Path, expected_size=None):
|
| 9 |
+
# Don't download the file twice.
|
| 10 |
+
# (If possible, verify the download using the file length.)
|
| 11 |
+
if download_to.exists():
|
| 12 |
+
if expected_size:
|
| 13 |
+
if download_to.stat().st_size == expected_size:
|
| 14 |
+
return
|
| 15 |
+
else:
|
| 16 |
+
st.info(f"{url} is already downloaded.")
|
| 17 |
+
# if not st.button("Download again?"):
|
| 18 |
+
return
|
| 19 |
+
|
| 20 |
+
download_to.parent.mkdir(parents=True, exist_ok=True)
|
| 21 |
+
|
| 22 |
+
# These are handles to two visual elements to animate.
|
| 23 |
+
weights_warning, progress_bar = None, None
|
| 24 |
+
try:
|
| 25 |
+
weights_warning = st.warning("Downloading %s..." % url)
|
| 26 |
+
progress_bar = st.progress(0)
|
| 27 |
+
with open(download_to, "wb") as output_file:
|
| 28 |
+
with urllib.request.urlopen(url) as response:
|
| 29 |
+
length = int(response.info()["Content-Length"])
|
| 30 |
+
counter = 0.0
|
| 31 |
+
MEGABYTES = 2.0 ** 20.0
|
| 32 |
+
while True:
|
| 33 |
+
data = response.read(8192)
|
| 34 |
+
if not data:
|
| 35 |
+
break
|
| 36 |
+
counter += len(data)
|
| 37 |
+
output_file.write(data)
|
| 38 |
+
|
| 39 |
+
# We perform animation by overwriting the elements.
|
| 40 |
+
weights_warning.warning(
|
| 41 |
+
"Downloading %s... (%6.2f/%6.2f MB)"
|
| 42 |
+
% (url, counter / MEGABYTES, length / MEGABYTES)
|
| 43 |
+
)
|
| 44 |
+
progress_bar.progress(min(counter / length, 1.0))
|
| 45 |
+
# Finally, we remove these visual elements by calling .empty().
|
| 46 |
+
finally:
|
| 47 |
+
if weights_warning is not None:
|
| 48 |
+
weights_warning.empty()
|
| 49 |
+
if progress_bar is not None:
|
| 50 |
+
progress_bar.empty()
|
sample_utils/turn.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from twilio.base.exceptions import TwilioRestException
|
| 6 |
+
from twilio.rest import Client
|
| 7 |
+
|
| 8 |
+
logger = logging.getLogger(__name__)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def get_ice_servers():
|
| 12 |
+
"""Use Twilio's TURN server because Streamlit Community Cloud has changed
|
| 13 |
+
its infrastructure and WebRTC connection cannot be established without TURN server now. # noqa: E501
|
| 14 |
+
We considered Open Relay Project (https://www.metered.ca/tools/openrelay/) too,
|
| 15 |
+
but it is not stable and hardly works as some people reported like https://github.com/aiortc/aiortc/issues/832#issuecomment-1482420656 # noqa: E501
|
| 16 |
+
See https://github.com/whitphx/streamlit-webrtc/issues/1213
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
# Ref: https://www.twilio.com/docs/stun-turn/api
|
| 20 |
+
try:
|
| 21 |
+
account_sid = os.environ["TWILIO_ACCOUNT_SID"]
|
| 22 |
+
auth_token = os.environ["TWILIO_AUTH_TOKEN"]
|
| 23 |
+
except KeyError:
|
| 24 |
+
logger.warning(
|
| 25 |
+
"Twilio credentials are not set. Fallback to a free STUN server from Google." # noqa: E501
|
| 26 |
+
)
|
| 27 |
+
return [{"urls": ["stun:stun.l.google.com:19302"]}]
|
| 28 |
+
|
| 29 |
+
client = Client(account_sid, auth_token)
|
| 30 |
+
|
| 31 |
+
try:
|
| 32 |
+
token = client.tokens.create()
|
| 33 |
+
except TwilioRestException as e:
|
| 34 |
+
st.warning(
|
| 35 |
+
f"Error occurred while accessing Twilio API. Fallback to a free STUN server from Google. ({e})" # noqa: E501
|
| 36 |
+
)
|
| 37 |
+
return [{"urls": ["stun:stun.l.google.com:19302"]}]
|
| 38 |
+
|
| 39 |
+
return token.ice_servers
|