File size: 1,444 Bytes
58d8dc0 c082346 3920a1a ea8f97d 3920a1a c082346 58d8dc0 3e4d670 c082346 785ddb0 c082346 58d8dc0 0934e7e 58d8dc0 c082346 58d8dc0 c082346 58d8dc0 785ddb0 c082346 785ddb0 58d8dc0 0934e7e c082346 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import streamlit as st
import json
import requests
import os
os.environ.get("API_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
API_URL = "https://api-inference.huggingface.co/models/sabre-code/pegasus-large-cnn-dailymail"
def query(payload):
data = json.dumps(payload)
response = requests.request("POST", API_URL, headers=headers, data=data)
return json.loads(response.content.decode("utf-8"))
st.set_page_config(layout='wide')
st.title("Text Summarisation App PEGASUS-large")
st.subheader('Input text below to be summarised', divider='rainbow')
# Create a text input widget
text_input = st.text_area(label="Input Text", height=200)
generated_summary = ""
# Define a function to generate the summary
def generate_summary(text):
def query(payload):
data = json.dumps(payload)
response = requests.request("POST", API_URL, headers=headers, data=data)
return json.loads(response.content.decode("utf-8"))
data = query({"inputs": text})
# Return the generated summary
return data
# Add a button to trigger the generation of the summary
generate_button = st.button(label="Generate Summary")
if generate_button:
# Call the generate_summary function when the button is clicked
generated_summary = generate_summary(text_input)
#st.success("Summary Generated!")
# Display the generated summary
st.markdown("## Summary")
st.success(generated_summary) |