# embeddings functions from langchain.vectorstores import FAISS from langchain.document_loaders import ReadTheDocsLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings import time from langchain_core.documents import Document def create_embeddings( docs: list[Document], chunk_size:int, chunk_overlap:int, embedding_model: str = "sentence-transformers/multi-qa-mpnet-base-dot-v1", ): """given a sequence of `Document` objects this fucntion will generate embeddings for it. ## argument :params docs (list[Document]) -> list of `list[Document]` :params chunk_size (int) -> chunk size in which documents are chunks :params chunk_overlap (int) -> the amount of token that will be overlapped between chunks :params embedding_model (str) -> the huggingspace model that will embed the documents ## Return Tuple of embedding and chunks """ text_splitter = RecursiveCharacterTextSplitter( separators=["\n\n", "\n", "(?<=\. )", " ", ""], chunk_size = chunk_size, chunk_overlap = chunk_overlap, length_function = len, ) # Stage one: read all the docs, split them into chunks. st = time.time() print('Loading documents ...') chunks = text_splitter.create_documents([doc.page_content for doc in docs], metadatas=[doc.metadata for doc in docs]) et = time.time() - st print(f'Time taken: {et} seconds.') #Stage two: embed the docs. embeddings = HuggingFaceEmbeddings(model_name=embedding_model) print(f"create a total of {len(chunks)}") return embeddings,chunks