sabazo commited on
Commit
b1f53d4
·
unverified ·
2 Parent(s): 8145c48 f5d22a4

Merge pull request #1 from almutareb/starter_docsqa

Browse files
.devcontainer/Dockerfile ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM mcr.microsoft.com/devcontainers/base:jammy
2
+ # FROM mcr.microsoft.com/devcontainers/base:jammy
3
+
4
+ ARG DEBIAN_FRONTEND=noninteractive
5
+ ARG USER=vscode
6
+
7
+ RUN DEBIAN_FRONTEND=noninteractive \
8
+ && apt-get update \
9
+ && apt-get install -y build-essential --no-install-recommends make \
10
+ ca-certificates \
11
+ git \
12
+ libssl-dev \
13
+ zlib1g-dev \
14
+ libbz2-dev \
15
+ libreadline-dev \
16
+ libsqlite3-dev \
17
+ wget \
18
+ curl \
19
+ llvm \
20
+ libncurses5-dev \
21
+ xz-utils \
22
+ tk-dev \
23
+ libxml2-dev \
24
+ libxmlsec1-dev \
25
+ libffi-dev \
26
+ liblzma-dev
27
+
28
+ # Python and poetry installation
29
+ USER $USER
30
+ ARG HOME="/home/$USER"
31
+ ARG PYTHON_VERSION=3.11
32
+
33
+ ENV PYENV_ROOT="${HOME}/.pyenv"
34
+ ENV PATH="${PYENV_ROOT}/shims:${PYENV_ROOT}/bin:${HOME}/.local/bin:$PATH"
35
+
36
+ RUN echo "done 0" \
37
+ && curl https://pyenv.run | bash \
38
+ && echo "done 1" \
39
+ && pyenv install ${PYTHON_VERSION} \
40
+ && echo "done 2" \
41
+ && pyenv global ${PYTHON_VERSION} \
42
+ && echo "done 3" \
43
+ && curl -sSL https://install.python-poetry.org | python3 - \
44
+ && poetry config virtualenvs.in-project true
.devcontainer/devcontainer.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "poetry3-poetry-pyenv",
3
+ "build": {
4
+ "dockerfile": "Dockerfile"
5
+ },
6
+
7
+ // 👇 Features to add to the Dev Container. More info: https://containers.dev/implementors/features.
8
+ // "features": {},
9
+
10
+ // 👇 Use 'forwardPorts' to make a list of ports inside the container available locally.
11
+ // "forwardPorts": [],
12
+
13
+ // 👇 Use 'postCreateCommand' to run commands after the container is created.
14
+ // "postCreateCommand": "",
15
+
16
+ // 👇 Configure tool-specific properties.
17
+ "customizations": {
18
+ "vscode": {
19
+ "extensions":["ms-python.python", "njpwerner.autodocstring","ms-azuretools.vscode-docker", "qwtel.sqlite-viewer"]
20
+ }
21
+ }
22
+
23
+ // 👇 Uncomment to connect as root instead. More info: https://aka.ms/dev-containers-non-root.
24
+ // "remoteUser": "root"
25
+ }
.github/dependabot.yml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # To get started with Dependabot version updates, you'll need to specify which
2
+ # package ecosystems to update and where the package manifests are located.
3
+ # Please see the documentation for more information:
4
+ # https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
5
+ # https://containers.dev/guide/dependabot
6
+
7
+ version: 2
8
+ updates:
9
+ - package-ecosystem: "devcontainers"
10
+ directory: "/"
11
+ schedule:
12
+ interval: weekly
.github/workflows/pylint.yml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Pylint
2
+
3
+ on: [push]
4
+
5
+ jobs:
6
+ build:
7
+ runs-on: ubuntu-latest
8
+ strategy:
9
+ matrix:
10
+ python-version: ["3.8", "3.9", "3.10"]
11
+ steps:
12
+ - uses: actions/checkout@v3
13
+ - name: Set up Python ${{ matrix.python-version }}
14
+ uses: actions/setup-python@v3
15
+ with:
16
+ python-version: ${{ matrix.python-version }}
17
+ - name: Install dependencies
18
+ run: |
19
+ python -m pip install --upgrade pip
20
+ pip install pylint
21
+ - name: Analysing the code with pylint
22
+ run: |
23
+ pylint $(git ls-files '*.py')
.gitignore CHANGED
@@ -158,3 +158,6 @@ cython_debug/
158
  # and can be added to the global gitignore or merged into this file. For a more nuclear
159
  # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
  #.idea/
 
 
 
 
158
  # and can be added to the global gitignore or merged into this file. For a more nuclear
159
  # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
  #.idea/
161
+ *.zip
162
+ *.pkl
163
+ *.faiss
CONTRIBUTION.md CHANGED
@@ -1,36 +1,28 @@
1
- # Contributing to The Project
2
 
3
- We welcome contributions from everyone. To make the process as smooth as possible, please follow the guidelines below.
 
4
 
5
- ## How to Contribute
 
 
6
 
7
- ### Code Contributions
 
8
 
9
- 1. **Creating a Branch**: For any code contribution, start by creating a branch from the main project. The branch should be named using the pattern `#issue-id short-name-to-describe-what-is-added`. This helps in linking the contributions directly to the issues they are meant to resolve.
 
10
 
11
- 2. **Pull Requests**: Once you've made your changes, create a pull request (PR). Please fill out the pull request template with all the required information. This includes a summary of your changes and why they are necessary.
 
 
 
 
 
12
 
13
- 3. **Review Process**: Every code contribution requires a review. A minimum of one maintainer must review and approve your contribution before it can be merged. This ensures quality and adherence to the project's standards. Please ensure your code is well-documented through comments and, if necessary, additional documentation files.
 
14
 
15
- 4. **Testing**: Your code must be tested to ensure it works as expected and does not introduce new issues.
16
-
17
- ### Reporting Issues
18
-
19
- When reporting issues, please use the provided issue template. Your report should include:
20
-
21
- - A clear, descriptive title
22
- - A detailed description of the issue
23
- - Steps to reproduce the issue
24
- - Logs, if applicable
25
- - Screenshots, if applicable
26
-
27
- This information is crucial in diagnosing and fixing the issue you're experiencing.
28
-
29
- ### Suggestions
30
-
31
- We're always looking for new ideas to improve our project. If you have a suggestion, please:
32
-
33
- - Clearly describe your suggestion, including the purpose and intended outcome.
34
- - Explain why you believe this change would be beneficial to the project.
35
-
36
- We appreciate your contributions and look forward to collaborating with you!
 
1
+ # Pull Request Template
2
 
3
+ ## Description
4
+ Please include a brief description of the changes introduced by this PR.
5
 
6
+ ## Related Issue(s)
7
+ - If this PR addresses a particular issue, please reference it here using GitHub's linking syntax, e.g., "Fixes #123".
8
+ - If there's no related issue, briefly explain the motivation behind these changes.
9
 
10
+ ## Changes Made
11
+ Please provide a list of the changes made in this PR.
12
 
13
+ ## Screenshots (if applicable)
14
+ If the changes include UI updates or visual changes, please attach relevant screenshots here.
15
 
16
+ ## Checklist
17
+ - [ ] I have tested my changes locally and ensured that they work as expected.
18
+ - [ ] I have updated the documentation (if applicable).
19
+ - [ ] My code follows the project's coding conventions and style guidelines.
20
+ - [ ] I have added appropriate test cases (if applicable).
21
+ - [ ] I have reviewed my own code to ensure its quality.
22
 
23
+ ## Additional Notes
24
+ Add any additional notes or context about this PR here.
25
 
26
+ ## Reviewer(s)
27
+ - @reviewer1
28
+ - @reviewer2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,32 +1,33 @@
1
- # mail_automation_wf
2
- <img width="424" alt="image" src="https://github.com/almutareb/mail_automation_wf/assets/104657679/9fc2d76a-03fd-42f3-904f-0f6386d37091">
3
-
4
- ## Overview
5
- This project aims to automate the processing of incoming emails by performing various tasks, including fetching emails, recognizing entities, classifying and summarizing content, enriching data, and drafting responses. This README provides detailed information on the project's goals, agents, tasks, and overall workflow.
6
-
7
- ### Table of Contents
8
- - Goals
9
- - Agents and Tasks
10
- - Email Fetcher
11
- - Attachment Downloader
12
- - Attachment Processor
13
- - Entity Recognizer
14
- - Classifier
15
- - Data Enricher
16
- - Data Checker
17
- - Historical Data Fetcher
18
- - Email Writer
19
- - Quality Checker
20
- - Email Saver
21
- - Workflow
22
- - Installation
23
- - Configuration
24
- - Usage
25
- - Contributing
26
- - License
27
-
28
-
29
-
30
-
31
-
32
-
 
 
1
+ # Anatomy of Advanced Enterprise Rag Systems
2
+
3
+ This repository accompanies the blog series "The Anatomy of Advanced Enterprise Rag Systems" and provides a hands-on learning experience for building sophisticated Rag systems. Dive deep into each component, from setup and evaluation to security and multi-agent interactions.
4
+
5
+ Explore these key topics:
6
+
7
+ - Test Setup and Evaluation Metrics: Learn how to assess the performance and effectiveness of your Rag system.
8
+ - Data Preparation and Management: Discover techniques for organizing and optimizing your knowledge base.
9
+ - User Input Processing: Understand how to handle diverse user queries and extract relevant information.
10
+ - Retrieval System: Unleash the power of retrieving relevant passages from your knowledge base.
11
+ - Information Processing and Generation: Craft accurate and informative responses using state-of-the-art techniques.
12
+ - Feedback and Continuous Improvement: Enhance your Rag system over time using user feedback and data analysis.
13
+ - Multi-agents and Agent-services: Explore advanced architectures for distributed and collaborative Rag systems.
14
+ - Monitoring and Security: Ensure the robustness and trustworthiness of your Rag system with proper monitoring and security practices.
15
+
16
+ What you'll find here:
17
+
18
+ - Code examples: Implementations of key concepts from each topic, ready to use and adapt.
19
+ - Data samples: Pre-prepared data sets for experimentation and testing.
20
+ - Additional resources: Links to relevant articles, libraries, and tools to deepen your understanding.
21
+
22
+ Getting started:
23
+
24
+ - Clone this repository: git clone https://github.com/<username>/advanced-enterprise-rag-systems.git
25
+ - Follow the instructions in each topic directory.
26
+
27
+ Contributing:
28
+
29
+ We welcome your contributions! Share your expertise, improve existing code examples, or add new ones. Submit a pull request to share your valuable additions.
30
+
31
+ License:
32
+
33
+ This project is licensed under the MIT License: LICENSE.
app_gui.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import Gradio for UI, along with other necessary libraries
2
+ import gradio as gr
3
+ # need to import the qa!
4
+
5
+ # Function to add a new input to the chat history
6
+ def add_text(history, text):
7
+ # Append the new text to the history with a placeholder for the response
8
+ history = history + [(text, None)]
9
+ return history, ""
10
+
11
+ # Function representing the bot's response mechanism
12
+ def bot(history):
13
+ # Obtain the response from the 'infer' function using the latest input
14
+ response = infer(history[-1][0], history)
15
+ sources = [doc.metadata.get("source") for doc in response['source_documents']]
16
+ src_list = '\n'.join(sources)
17
+ print_this = response['result'] + "\n\n\n Sources: \n\n\n" + src_list
18
+
19
+
20
+ history[-1][1] = print_this #response['answer']
21
+ # Update the history with the bot's response
22
+ #history[-1][1] = response['result']
23
+ return history
24
+
25
+ # Function to infer the response using the RAG model
26
+ def infer(question, history):
27
+ # Use the question and history to query the RAG model
28
+ result = qa({"query": question, "history": history, "question": question})
29
+ return result
30
+
31
+ # CSS styling for the Gradio interface
32
+ css = """
33
+ #col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
34
+ """
35
+
36
+ # HTML content for the Gradio interface title
37
+ title = """
38
+ <div style="text-align:left;">
39
+ <p>Hello, I BotTina 2.0, your intelligent AI assistant. I can help you explore Wuerttembergische Versicherungs products.<br />
40
+ </div>
41
+ """
42
+
43
+ # Building the Gradio interface
44
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
45
+ with gr.Column(elem_id="col-container"):
46
+ gr.HTML(title) # Add the HTML title to the interface
47
+ chatbot = gr.Chatbot([], elem_id="chatbot",
48
+ bubble_full_width=False,
49
+ avatar_images=(None, "https://dacodi-production.s3.amazonaws.com/store/87bc00b6727589462954f2e3ff6f531c.png"),
50
+ height=680,) # Initialize the chatbot component
51
+ clear = gr.Button("Clear") # Add a button to clear the chat
52
+
53
+ # Create a row for the question input
54
+ with gr.Row():
55
+ question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
56
+
57
+ # Define the action when the question is submitted
58
+ question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then(
59
+ bot, chatbot, chatbot
60
+ )
61
+ # Define the action for the clear button
62
+ clear.click(lambda: None, None, chatbot, queue=False)
63
+
64
+ # Launch the Gradio demo interface
65
+ demo.launch(share=False, debug=True)
core-langchain-rag.py ADDED
@@ -0,0 +1,315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Importing necessary libraries
2
+ import sys
3
+ import os
4
+ import time
5
+
6
+ # # Importing RecursiveUrlLoader for web scraping and BeautifulSoup for HTML parsing
7
+ # from langchain.document_loaders.recursive_url_loader import RecursiveUrlLoader
8
+ # from bs4 import BeautifulSoup as Soup
9
+ # import mimetypes
10
+
11
+ # # List of URLs to scrape
12
+ # urls = ["https://langchain-doc.readthedocs.io/en/latest"]
13
+
14
+ # # Initialize an empty list to store the documents
15
+ # docs = []
16
+
17
+ # # Looping through each URL in the list - this could take some time!
18
+ # stf = time.time() # Start time for performance measurement
19
+ # for url in urls:
20
+ # try:
21
+ # st = time.time() # Start time for performance measurement
22
+ # # Create a RecursiveUrlLoader instance with a specified URL and depth
23
+ # # The extractor function uses BeautifulSoup to parse the HTML content and extract text
24
+ # loader = RecursiveUrlLoader(url=url, max_depth=5, extractor=lambda x: Soup(x, "html.parser").text)
25
+
26
+ # # Load the documents from the URL and extend the docs list
27
+ # docs.extend(loader.load())
28
+
29
+ # et = time.time() - st # Calculate time taken for splitting
30
+ # print(f'Time taken for downloading documents from {url}: {et} seconds.')
31
+ # except Exception as e:
32
+ # # Print an error message if there is an issue with loading or parsing the URL
33
+ # print(f"Failed to load or parse the URL {url}. Error: {e}", file=sys.stderr)
34
+ # etf = time.time() - stf # Calculate time taken for splitting
35
+ # print(f'Total time taken for downloading {len(docs)} documents: {etf} seconds.')
36
+
37
+ # # Import necessary modules for text splitting and vectorization
38
+ # from langchain.text_splitter import RecursiveCharacterTextSplitter
39
+ # import time
40
+ # from langchain_community.vectorstores import FAISS
41
+ # from langchain.vectorstores.utils import filter_complex_metadata
42
+ # from langchain_community.embeddings import HuggingFaceEmbeddings
43
+
44
+ # # Configure the text splitter
45
+ # text_splitter = RecursiveCharacterTextSplitter(
46
+ # separators=["\n\n", "\n", "(?<=\. )", " ", ""], # Define the separators for splitting text
47
+ # chunk_size=500, # The size of each text chunk
48
+ # chunk_overlap=50, # Overlap between chunks to ensure continuity
49
+ # length_function=len, # Function to determine the length of each chunk
50
+ # )
51
+
52
+ # try:
53
+ # # Stage one: Splitting the documents into chunks for vectorization
54
+ # st = time.time() # Start time for performance measurement
55
+ # print('Loading documents and creating chunks ...')
56
+ # # Split each document into chunks using the configured text splitter
57
+ # chunks = text_splitter.create_documents([doc.page_content for doc in docs], metadatas=[doc.metadata for doc in docs])
58
+ # et = time.time() - st # Calculate time taken for splitting
59
+ # print(f"created "+chunks+" chunks")
60
+ # print(f'Time taken for document chunking: {et} seconds.')
61
+ # except Exception as e:
62
+ # print(f"Error during document chunking: {e}", file=sys.stderr)
63
+
64
+ # # Path for saving the FAISS index
65
+ # FAISS_INDEX_PATH = "./vectorstore/lc-faiss-multi-mpnet-500"
66
+
67
+ # try:
68
+ # # Stage two: Vectorization of the document chunks
69
+ # model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1" # Model used for embedding
70
+
71
+ # # Initialize HuggingFace embeddings with the specified model
72
+ # embeddings = HuggingFaceEmbeddings(model_name=model_name)
73
+
74
+ # print(f'Loading chunks into vector store ...')
75
+ # st = time.time() # Start time for performance measurement
76
+ # # Create a FAISS vector store from the document chunks and save it locally
77
+ # db = FAISS.from_documents(filter_complex_metadata(chunks), embeddings)
78
+ # db.save_local(FAISS_INDEX_PATH)
79
+ # et = time.time() - st # Calculate time taken for vectorization
80
+ # print(f'Time taken for vectorization and saving: {et} seconds.')
81
+ # except Exception as e:
82
+ # print(f"Error during vectorization or FAISS index saving: {e}", file=sys.stderr)
83
+
84
+ # alternatively download a preparaed vectorized index from S3 and load the index into vectorstore
85
+ # Import necessary libraries for AWS S3 interaction, file handling, and FAISS vector stores
86
+ import boto3
87
+ from botocore import UNSIGNED
88
+ from botocore.client import Config
89
+ import zipfile
90
+ from langchain_community.vectorstores import FAISS
91
+ from langchain_huggingface import HuggingFaceEmbeddings
92
+ from dotenv import load_dotenv
93
+
94
+ # Load environment variables from a .env file
95
+ config = load_dotenv(".env")
96
+
97
+ # Retrieve the Hugging Face API token from environment variables
98
+ HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
99
+ S3_LOCATION = os.getenv("S3_LOCATION")
100
+ S3_FILE_NAME = os.getenv("FAISS_VS_NAME")
101
+ FAISS_INDEX_PATH = os.getenv("FAISS_INDEX_PATH")
102
+
103
+ # try:
104
+ # # Initialize an S3 client with unsigned configuration for public access
105
+ # s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
106
+
107
+ # # Define the FAISS index path and the destination for the downloaded file
108
+ # #FAISS_INDEX_PATH = './vectorstore/lc-faiss-multi-mpnet-500-markdown'
109
+ # VS_DESTINATION = FAISS_INDEX_PATH + ".zip"
110
+
111
+ # # Download the pre-prepared vectorized index from the S3 bucket
112
+ # print("Downloading the pre-prepared vectorized index from S3...")
113
+ # s3.download_file(S3_LOCATION, S3_FILE_NAME, VS_DESTINATION)
114
+
115
+ # # Extract the downloaded zip file
116
+ # with zipfile.ZipFile(VS_DESTINATION, 'r') as zip_ref:
117
+ # zip_ref.extractall('./vectorstore/')
118
+ # print("Download and extraction completed.")
119
+
120
+ # except Exception as e:
121
+ # print(f"Error during downloading or extracting from S3: {e}", file=sys.stderr)
122
+
123
+ # Define the model name for embeddings
124
+ model_name = os.getenv("EMBEDDING_MODEL")
125
+
126
+ try:
127
+ # Initialize HuggingFace embeddings with the specified model
128
+ embeddings = HuggingFaceEmbeddings(model_name=model_name)
129
+
130
+ # Load the local FAISS index with the specified embeddings
131
+ db = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)
132
+ print("FAISS index loaded successfully.")
133
+ except Exception as e:
134
+ print(f"Error during FAISS index loading: {e}", file=sys.stderr)
135
+
136
+ # Import necessary modules for environment variable management and HuggingFace integration
137
+ from langchain_huggingface import HuggingFaceEndpoint
138
+
139
+ # Initialize the vector store as a retriever for the RAG pipeline
140
+ retriever = db.as_retriever()#search_type="mmr", search_kwargs={'k': 3, 'lambda_mult': 0.25})
141
+
142
+ llm_model = os.getenv("LLM_MODEL")
143
+
144
+ try:
145
+ # Load the model from the Hugging Face Hub
146
+ model_id = HuggingFaceEndpoint(repo_id=llm_model,
147
+ temperature=0.1, # Controls randomness in response generation (lower value means less random)
148
+ max_new_tokens=1024, # Maximum number of new tokens to generate in responses
149
+ repetition_penalty=1.2, # Penalty for repeating the same words (higher value increases penalty)
150
+ return_full_text=False # If False, only the newly generated text is returned; if True, the input is included as well
151
+ )
152
+ print("Model loaded successfully from Hugging Face Hub.")
153
+ except Exception as e:
154
+ print(f"Error loading model from Hugging Face Hub: {e}", file=sys.stderr)
155
+
156
+
157
+
158
+ # Importing necessary modules for retrieval-based question answering and prompt handling
159
+ from langchain.chains import RetrievalQA
160
+ from langchain.chains import LLMChain
161
+ from langchain_core.prompts import PromptTemplate
162
+ from langchain.memory import ConversationBufferMemory
163
+ from langchain_core.output_parsers import StrOutputParser
164
+
165
+ # Declare a global variable 'qa' for the retrieval-based question answering system
166
+ global qa
167
+
168
+ # Define a prompt template for guiding the model's responses
169
+ template = """
170
+ You are a friendly insurance product advisor, your task is to help customers find the best products from Württembergische GmbH.\
171
+ You help the user find the answers to all his questions queries. Answer in short and simple terms and offer to explain the product and terms to the user.\
172
+ Use the following context (delimited by <ctx></ctx>) and the chat history (delimited by <hs></hs>) to help find the best product for the user:
173
+ ------
174
+ <ctx>
175
+ {context}
176
+ </ctx>
177
+ ------
178
+ <hs>
179
+ {history}
180
+ </hs>
181
+ ------
182
+ {question}
183
+ Answer:
184
+ """
185
+
186
+ # Create a PromptTemplate object with specified input variables and the defined template
187
+ prompt = PromptTemplate.from_template(
188
+ #input_variables=["history", "context", "question"], # Variables to be included in the prompt
189
+ template=template, # The prompt template as defined above
190
+ )
191
+ prompt.format(context="context", history="history", question="question")
192
+ # Create a memory buffer to manage conversation history
193
+ memory = ConversationBufferMemory(
194
+ memory_key="history", # Key for storing the conversation history
195
+ input_key="question" # Key for the input question
196
+ )
197
+
198
+ # Initialize the RetrievalQA object with the specified model, retriever, and additional configurations
199
+ qa = RetrievalQA.from_chain_type(
200
+ llm=model_id, # Language model loaded from Hugging Face Hub
201
+ retriever=retriever, # The vector store retriever initialized earlier
202
+ return_source_documents=True, # Option to return source documents along with responses
203
+ chain_type_kwargs={
204
+ "verbose": True, # Enables verbose output for debugging and analysis
205
+ "memory": memory, # Memory buffer for managing conversation history
206
+ "prompt": prompt # Prompt template for guiding the model's responses
207
+ }
208
+ )
209
+
210
+ def generate_qa_retriever(history: dict, question: str, llm_model:HuggingFaceEndpoint = model_id) -> dict:
211
+ """ Generare a response to queries using the retriever"""
212
+
213
+ # Define a prompt template for guiding the model's responses
214
+ template = """
215
+ You are a friendly insurance product advisor, your task is to help customers find the best products from Württembergische GmbH.\
216
+ You help the user find the answers to all his questions. Answer in short and simple terms and offer to explain the product and terms to the user.\
217
+ Respond only using the provided context (delimited by <ctx></ctx>) and only in German or Englisch, depending on the question's language.
218
+ Use the chat history (delimited by <hs></hs>) to help find the best product for the user:
219
+ ------
220
+ <ctx>
221
+ {context}
222
+ </ctx>
223
+ ------
224
+ <hs>
225
+ {history}
226
+ </hs>
227
+ ------
228
+ {question}
229
+ Answer:
230
+ """
231
+
232
+ # Create a PromptTemplate object with specified input variables and the defined template
233
+ prompt = PromptTemplate.from_template(
234
+ template=template, # The prompt template as defined above
235
+ )
236
+ prompt.format(context="context", history="history", question="question")
237
+ # Create a memory buffer to manage conversation history
238
+ memory = ConversationBufferMemory(
239
+ memory_key="history", # Key for storing the conversation history
240
+ input_key="question" # Key for the input question
241
+ )
242
+
243
+ llm_chain = prompt | llm_model
244
+ result = llm_chain.invoke({"context": retriever, "history": history, "question": question})
245
+ print(result)
246
+ return result
247
+
248
+ # Import Gradio for UI, along with other necessary libraries
249
+ import gradio as gr
250
+
251
+ # Function to add a new input to the chat history
252
+ def add_text(history, text):
253
+ # Append the new text to the history with a placeholder for the response
254
+ history = history + [(text, None)]
255
+ return history, ""
256
+
257
+ # Function representing the bot's response mechanism
258
+ def bot(history):
259
+ # Obtain the response from the 'infer' function using the latest input
260
+ response = infer(history[-1][0], history)
261
+ sources = [doc.metadata.get("source") for doc in response['source_documents']]
262
+ src_list = '\n'.join(sources)
263
+ print_this = response['result'] + "\n\n\n Sources: \n\n\n" + src_list
264
+
265
+
266
+ #history[-1][1] = response #print_this #response['answer']
267
+ history[-1][1] = print_this #response['answer']
268
+ # Update the history with the bot's response
269
+ #history[-1][1] = response['result']
270
+ return history
271
+
272
+ # Function to infer the response using the RAG model
273
+ def infer(question, history):
274
+ # Use the question and history to query the RAG model
275
+ #result = generate_qa_retriever(history, question)
276
+ result = qa({"query": question, "history": history, "question": question})
277
+ print(*result)
278
+ return result
279
+
280
+ # CSS styling for the Gradio interface
281
+ css = """
282
+ #col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
283
+ """
284
+
285
+ # HTML content for the Gradio interface title
286
+ title = """
287
+ <div style="text-align:left;">
288
+ <p>Hello, I BotTina 2.0, your intelligent AI assistant. I can help you explore Wuerttembergische Versicherungs products.<br />
289
+ </div>
290
+ """
291
+
292
+ # Building the Gradio interface
293
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
294
+ with gr.Column(elem_id="col-container"):
295
+ gr.HTML(title) # Add the HTML title to the interface
296
+ chatbot = gr.Chatbot([], elem_id="chatbot",
297
+ label="BotTina 2.0",
298
+ bubble_full_width=False,
299
+ avatar_images=(None, "https://dacodi-production.s3.amazonaws.com/store/87bc00b6727589462954f2e3ff6f531c.png"),
300
+ height=680,) # Initialize the chatbot component
301
+ clear = gr.Button("Clear") # Add a button to clear the chat
302
+
303
+ # Create a row for the question input
304
+ with gr.Row():
305
+ question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
306
+
307
+ # Define the action when the question is submitted
308
+ question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then(
309
+ bot, chatbot, chatbot
310
+ )
311
+ # Define the action for the clear button
312
+ clear.click(lambda: None, None, chatbot, queue=False)
313
+
314
+ # Launch the Gradio demo interface
315
+ demo.launch(debug=True)
docs/template.md ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Template
2
+
3
+ 1. **Architecture of advanced RAG**
4
+ 2. **Test setup and Evaluation metrics**
5
+ 3. **Data preparation (vectorization & chunking)**
6
+ 4. **Search indexing**
7
+ 5. **Query transformation**
8
+ 6. **Chat logic and query routing**
9
+ 7. **Multi agents and agent-services**
10
+ 8. **Monitoring responses and adding security**
11
+
12
+ ## Additional Resources
13
+
14
+ [Enterprise Rag](https://www.rungalileo.io/blog/mastering-rag-how-to-architect-an-enterprise-rag-systemhttps://www.rungalileo.io/blog/mastering-rag-how-to-architect-an-enterprise-rag-system)
15
+
16
+ [Advanced RAG](https://medium.com/towards-artificial-intelligence/advanced-rag-techniques-an-illustrated-overview-04d193d8fec6)
docs/workflow-advanced-rag.drawio ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <mxfile host="app.diagrams.net" modified="2024-02-02T11:21:08.029Z" agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:122.0) Gecko/20100101 Firefox/122.0" etag="EvpGiXuqtWkE4FAqL8_g" version="22.1.21" type="github">
2
+ <diagram id="C5RBs43oDa-KdzZeNtuy" name="Page-1">
3
+ <mxGraphModel dx="1434" dy="774" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="827" pageHeight="1169" math="0" shadow="0">
4
+ <root>
5
+ <mxCell id="WIyWlLk6GJQsqaUBKTNV-0" />
6
+ <mxCell id="WIyWlLk6GJQsqaUBKTNV-1" parent="WIyWlLk6GJQsqaUBKTNV-0" />
7
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-1" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;" edge="1" parent="WIyWlLk6GJQsqaUBKTNV-1" source="WIyWlLk6GJQsqaUBKTNV-3" target="eFb6EC-VP60E3mpf6WAh-0">
8
+ <mxGeometry relative="1" as="geometry" />
9
+ </mxCell>
10
+ <mxCell id="WIyWlLk6GJQsqaUBKTNV-3" value="User Authentication and Input" style="rounded=1;whiteSpace=wrap;html=1;fontSize=12;glass=0;strokeWidth=1;shadow=0;fillColor=#d5e8d4;strokeColor=#82b366;" parent="WIyWlLk6GJQsqaUBKTNV-1" vertex="1">
11
+ <mxGeometry x="24" y="80" width="120" height="40" as="geometry" />
12
+ </mxCell>
13
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-12" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;" edge="1" parent="WIyWlLk6GJQsqaUBKTNV-1" source="WIyWlLk6GJQsqaUBKTNV-7" target="WIyWlLk6GJQsqaUBKTNV-11">
14
+ <mxGeometry relative="1" as="geometry" />
15
+ </mxCell>
16
+ <mxCell id="WIyWlLk6GJQsqaUBKTNV-7" value="Query Processing" style="rounded=1;whiteSpace=wrap;html=1;fontSize=12;glass=0;strokeWidth=1;shadow=0;fillColor=#d5e8d4;strokeColor=#82b366;" parent="WIyWlLk6GJQsqaUBKTNV-1" vertex="1">
17
+ <mxGeometry x="180" y="160" width="120" height="40" as="geometry" />
18
+ </mxCell>
19
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-13" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;" edge="1" parent="WIyWlLk6GJQsqaUBKTNV-1" source="WIyWlLk6GJQsqaUBKTNV-11" target="eFb6EC-VP60E3mpf6WAh-3">
20
+ <mxGeometry relative="1" as="geometry" />
21
+ </mxCell>
22
+ <mxCell id="WIyWlLk6GJQsqaUBKTNV-11" value="Data Preparation and Management" style="rounded=1;whiteSpace=wrap;html=1;fontSize=12;glass=0;strokeWidth=1;shadow=0;fillColor=#ffe6cc;strokeColor=#d79b00;" parent="WIyWlLk6GJQsqaUBKTNV-1" vertex="1">
23
+ <mxGeometry x="330" y="160" width="120" height="40" as="geometry" />
24
+ </mxCell>
25
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-11" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;" edge="1" parent="WIyWlLk6GJQsqaUBKTNV-1" source="eFb6EC-VP60E3mpf6WAh-0" target="WIyWlLk6GJQsqaUBKTNV-7">
26
+ <mxGeometry relative="1" as="geometry" />
27
+ </mxCell>
28
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-0" value="Input Guardrails" style="whiteSpace=wrap;html=1;rounded=1;glass=0;strokeWidth=1;shadow=0;fillColor=#f8cecc;strokeColor=#b85450;" vertex="1" parent="WIyWlLk6GJQsqaUBKTNV-1">
29
+ <mxGeometry x="24" y="160" width="120" height="40" as="geometry" />
30
+ </mxCell>
31
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-14" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;" edge="1" parent="WIyWlLk6GJQsqaUBKTNV-1" source="eFb6EC-VP60E3mpf6WAh-3" target="eFb6EC-VP60E3mpf6WAh-5">
32
+ <mxGeometry relative="1" as="geometry" />
33
+ </mxCell>
34
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-3" value="Retrieval System" style="rounded=1;whiteSpace=wrap;html=1;fontSize=12;glass=0;strokeWidth=1;shadow=0;fillColor=#e1d5e7;strokeColor=#9673a6;" vertex="1" parent="WIyWlLk6GJQsqaUBKTNV-1">
35
+ <mxGeometry x="480" y="160" width="120" height="40" as="geometry" />
36
+ </mxCell>
37
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-15" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0.5;exitY=0;exitDx=0;exitDy=0;entryX=0.5;entryY=1;entryDx=0;entryDy=0;" edge="1" parent="WIyWlLk6GJQsqaUBKTNV-1" source="eFb6EC-VP60E3mpf6WAh-5" target="eFb6EC-VP60E3mpf6WAh-9">
38
+ <mxGeometry relative="1" as="geometry" />
39
+ </mxCell>
40
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-18" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0;exitY=0;exitDx=0;exitDy=0;entryX=0.75;entryY=1;entryDx=0;entryDy=0;dashed=1;" edge="1" parent="WIyWlLk6GJQsqaUBKTNV-1" source="eFb6EC-VP60E3mpf6WAh-5" target="eFb6EC-VP60E3mpf6WAh-6">
41
+ <mxGeometry relative="1" as="geometry">
42
+ <Array as="points">
43
+ <mxPoint x="630" y="130" />
44
+ <mxPoint x="450" y="130" />
45
+ </Array>
46
+ </mxGeometry>
47
+ </mxCell>
48
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-5" value="Information Processing and Augmentation" style="rounded=1;whiteSpace=wrap;html=1;fontSize=12;glass=0;strokeWidth=1;shadow=0;fillColor=#fff2cc;strokeColor=#d6b656;" vertex="1" parent="WIyWlLk6GJQsqaUBKTNV-1">
49
+ <mxGeometry x="630" y="160" width="120" height="40" as="geometry" />
50
+ </mxCell>
51
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-6" value="Observability and Feedback" style="rounded=1;whiteSpace=wrap;html=1;fontSize=12;glass=0;strokeWidth=1;shadow=0;" vertex="1" parent="WIyWlLk6GJQsqaUBKTNV-1">
52
+ <mxGeometry x="360" y="40" width="120" height="40" as="geometry" />
53
+ </mxCell>
54
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-21" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0.98;exitY=0.02;exitDx=0;exitDy=0;exitPerimeter=0;entryX=0.575;entryY=1;entryDx=0;entryDy=0;dashed=1;entryPerimeter=0;" edge="1" parent="WIyWlLk6GJQsqaUBKTNV-1" source="eFb6EC-VP60E3mpf6WAh-8" target="eFb6EC-VP60E3mpf6WAh-3">
55
+ <mxGeometry relative="1" as="geometry" />
56
+ </mxCell>
57
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-8" value="Caching" style="strokeWidth=2;html=1;shape=mxgraph.flowchart.multi-document;whiteSpace=wrap;fillColor=#ffe6cc;strokeColor=#d79b00;" vertex="1" parent="WIyWlLk6GJQsqaUBKTNV-1">
58
+ <mxGeometry x="376" y="240" width="88" height="60" as="geometry" />
59
+ </mxCell>
60
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-16" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0;exitY=0;exitDx=0;exitDy=0;entryX=1;entryY=0.5;entryDx=0;entryDy=0;dashed=1;" edge="1" parent="WIyWlLk6GJQsqaUBKTNV-1" source="eFb6EC-VP60E3mpf6WAh-9" target="eFb6EC-VP60E3mpf6WAh-6">
61
+ <mxGeometry relative="1" as="geometry" />
62
+ </mxCell>
63
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-9" value="Output and Response" style="rounded=1;whiteSpace=wrap;html=1;fontSize=12;glass=0;strokeWidth=1;shadow=0;fillColor=#e1d5e7;strokeColor=#9673a6;" vertex="1" parent="WIyWlLk6GJQsqaUBKTNV-1">
64
+ <mxGeometry x="630" y="80" width="120" height="40" as="geometry" />
65
+ </mxCell>
66
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-17" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=1;exitY=0;exitDx=0;exitDy=0;entryX=0.325;entryY=0.975;entryDx=0;entryDy=0;entryPerimeter=0;dashed=1;" edge="1" parent="WIyWlLk6GJQsqaUBKTNV-1" source="eFb6EC-VP60E3mpf6WAh-0" target="eFb6EC-VP60E3mpf6WAh-6">
67
+ <mxGeometry relative="1" as="geometry">
68
+ <Array as="points">
69
+ <mxPoint x="144" y="130" />
70
+ <mxPoint x="399" y="130" />
71
+ </Array>
72
+ </mxGeometry>
73
+ </mxCell>
74
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-19" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0.75;exitY=1;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;entryPerimeter=0;dashed=1;" edge="1" parent="WIyWlLk6GJQsqaUBKTNV-1" source="WIyWlLk6GJQsqaUBKTNV-7" target="eFb6EC-VP60E3mpf6WAh-8">
75
+ <mxGeometry relative="1" as="geometry" />
76
+ </mxCell>
77
+ <mxCell id="eFb6EC-VP60E3mpf6WAh-20" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=1;entryY=0.5;entryDx=0;entryDy=0;entryPerimeter=0;dashed=1;" edge="1" parent="WIyWlLk6GJQsqaUBKTNV-1" source="eFb6EC-VP60E3mpf6WAh-9" target="eFb6EC-VP60E3mpf6WAh-8">
78
+ <mxGeometry relative="1" as="geometry" />
79
+ </mxCell>
80
+ </root>
81
+ </mxGraphModel>
82
+ </diagram>
83
+ </mxfile>
example.env ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # API Keys for services
2
+ HUGGINGFACEHUB_API_TOKEN=""
3
+ GOOGLE_CSE_ID=""
4
+ GOOGLE_API_KEY=""
5
+
6
+ # AWS S3 object storage
7
+ S3_LOCATION=""
8
+ S3_FILE_NAME=""
9
+
10
+ # Local vectorstore storage
11
+ FAISS_INDEX_PATH = ""
12
+
13
+ # llm and embedding models
14
+ embedding_model=""
15
+ llm_model=""
mail_automation_draft.drawio DELETED
@@ -1,140 +0,0 @@
1
- <mxfile host="app.diagrams.net" modified="2024-05-21T13:40:30.482Z" agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:126.0) Gecko/20100101 Firefox/126.0" etag="dPw-sfjJEinoEt61k41I" version="24.4.4" type="github">
2
- <diagram name="Page-1" id="JIRIjCkc2eHKuGLTyx-l">
3
- <mxGraphModel dx="1434" dy="-1564" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="827" pageHeight="1169" math="0" shadow="0">
4
- <root>
5
- <mxCell id="0" />
6
- <mxCell id="1" parent="0" />
7
- <mxCell id="0ipz06AKfEBxF18oT8nj-1" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;" parent="1" source="0ipz06AKfEBxF18oT8nj-19" target="0ipz06AKfEBxF18oT8nj-6" edge="1">
8
- <mxGeometry relative="1" as="geometry" />
9
- </mxCell>
10
- <mxCell id="0ipz06AKfEBxF18oT8nj-2" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;" parent="1" source="0ipz06AKfEBxF18oT8nj-3" target="0ipz06AKfEBxF18oT8nj-31" edge="1">
11
- <mxGeometry relative="1" as="geometry" />
12
- </mxCell>
13
- <mxCell id="0ipz06AKfEBxF18oT8nj-3" value="Ticket Creation" style="ellipse;whiteSpace=wrap;html=1;" parent="1" vertex="1">
14
- <mxGeometry x="217.5" y="2640" width="120" height="80" as="geometry" />
15
- </mxCell>
16
- <mxCell id="0ipz06AKfEBxF18oT8nj-4" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;" parent="1" source="0ipz06AKfEBxF18oT8nj-6" target="0ipz06AKfEBxF18oT8nj-8" edge="1">
17
- <mxGeometry relative="1" as="geometry" />
18
- </mxCell>
19
- <mxCell id="0ipz06AKfEBxF18oT8nj-5" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;" parent="1" source="0ipz06AKfEBxF18oT8nj-6" target="0ipz06AKfEBxF18oT8nj-21" edge="1">
20
- <mxGeometry relative="1" as="geometry" />
21
- </mxCell>
22
- <mxCell id="0ipz06AKfEBxF18oT8nj-6" value="Fetch Emails" style="ellipse;whiteSpace=wrap;html=1;" parent="1" vertex="1">
23
- <mxGeometry x="210.5" y="2480" width="120" height="80" as="geometry" />
24
- </mxCell>
25
- <mxCell id="0ipz06AKfEBxF18oT8nj-7" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;" parent="1" source="0ipz06AKfEBxF18oT8nj-8" target="0ipz06AKfEBxF18oT8nj-10" edge="1">
26
- <mxGeometry relative="1" as="geometry" />
27
- </mxCell>
28
- <mxCell id="0ipz06AKfEBxF18oT8nj-8" value="Entity Recognition" style="ellipse;whiteSpace=wrap;html=1;" parent="1" vertex="1">
29
- <mxGeometry x="410.5" y="2480" width="120" height="80" as="geometry" />
30
- </mxCell>
31
- <mxCell id="0ipz06AKfEBxF18oT8nj-9" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;" parent="1" source="0ipz06AKfEBxF18oT8nj-10" target="0ipz06AKfEBxF18oT8nj-14" edge="1">
32
- <mxGeometry relative="1" as="geometry" />
33
- </mxCell>
34
- <mxCell id="0ipz06AKfEBxF18oT8nj-10" value="Classification &amp;amp; Summarization" style="ellipse;whiteSpace=wrap;html=1;" parent="1" vertex="1">
35
- <mxGeometry x="630" y="2480" width="120" height="80" as="geometry" />
36
- </mxCell>
37
- <mxCell id="0ipz06AKfEBxF18oT8nj-11" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0.5;exitY=1;exitDx=0;exitDy=0;" parent="1" source="0ipz06AKfEBxF18oT8nj-17" target="0ipz06AKfEBxF18oT8nj-15" edge="1">
38
- <mxGeometry relative="1" as="geometry" />
39
- </mxCell>
40
- <mxCell id="0ipz06AKfEBxF18oT8nj-12" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;" parent="1" source="0ipz06AKfEBxF18oT8nj-14" target="0ipz06AKfEBxF18oT8nj-17" edge="1">
41
- <mxGeometry relative="1" as="geometry" />
42
- </mxCell>
43
- <mxCell id="0ipz06AKfEBxF18oT8nj-13" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;" parent="1" source="0ipz06AKfEBxF18oT8nj-14" target="0ipz06AKfEBxF18oT8nj-24" edge="1">
44
- <mxGeometry relative="1" as="geometry" />
45
- </mxCell>
46
- <mxCell id="0ipz06AKfEBxF18oT8nj-14" value="Data Enrichment" style="ellipse;whiteSpace=wrap;html=1;" parent="1" vertex="1">
47
- <mxGeometry x="630" y="2640" width="120" height="80" as="geometry" />
48
- </mxCell>
49
- <mxCell id="0ipz06AKfEBxF18oT8nj-15" value="Draft Response" style="ellipse;whiteSpace=wrap;html=1;fillColor=#dae8fc;strokeColor=#6c8ebf;" parent="1" vertex="1">
50
- <mxGeometry x="410.5" y="2800" width="120" height="80" as="geometry" />
51
- </mxCell>
52
- <mxCell id="0ipz06AKfEBxF18oT8nj-16" value="" style="curved=1;endArrow=classic;html=1;rounded=0;exitX=0.75;exitY=1;exitDx=0;exitDy=0;entryX=0.25;entryY=1;entryDx=0;entryDy=0;" parent="1" source="0ipz06AKfEBxF18oT8nj-19" target="0ipz06AKfEBxF18oT8nj-19" edge="1">
53
- <mxGeometry width="50" height="50" relative="1" as="geometry">
54
- <mxPoint x="200" y="2730" as="sourcePoint" />
55
- <mxPoint x="80" y="2580" as="targetPoint" />
56
- <Array as="points">
57
- <mxPoint x="130" y="2600" />
58
- <mxPoint x="90" y="2610" />
59
- <mxPoint x="60" y="2620" />
60
- <mxPoint x="53" y="2570" />
61
- </Array>
62
- </mxGeometry>
63
- </mxCell>
64
- <mxCell id="0ipz06AKfEBxF18oT8nj-17" value="Data Complete" style="rhombus;whiteSpace=wrap;html=1;" parent="1" vertex="1">
65
- <mxGeometry x="430.5" y="2640" width="80" height="80" as="geometry" />
66
- </mxCell>
67
- <mxCell id="0ipz06AKfEBxF18oT8nj-18" value="No" style="text;html=1;align=center;verticalAlign=middle;resizable=0;points=[];autosize=1;strokeColor=none;fillColor=none;" parent="1" vertex="1">
68
- <mxGeometry x="460.5" y="2748" width="40" height="30" as="geometry" />
69
- </mxCell>
70
- <mxCell id="0ipz06AKfEBxF18oT8nj-19" value="Periodically Check Emails" style="shape=process;whiteSpace=wrap;html=1;backgroundOutline=1;" parent="1" vertex="1">
71
- <mxGeometry x="30" y="2490" width="120" height="60" as="geometry" />
72
- </mxCell>
73
- <mxCell id="0ipz06AKfEBxF18oT8nj-20" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;" parent="1" source="0ipz06AKfEBxF18oT8nj-21" target="0ipz06AKfEBxF18oT8nj-22" edge="1">
74
- <mxGeometry relative="1" as="geometry" />
75
- </mxCell>
76
- <mxCell id="0ipz06AKfEBxF18oT8nj-21" value="Download Attachements" style="whiteSpace=wrap;html=1;" parent="1" vertex="1">
77
- <mxGeometry x="210.5" y="2360" width="120" height="60" as="geometry" />
78
- </mxCell>
79
- <mxCell id="0ipz06AKfEBxF18oT8nj-22" value="Extract Text and Images from PDF" style="whiteSpace=wrap;html=1;" parent="1" vertex="1">
80
- <mxGeometry x="399.5" y="2360" width="120" height="60" as="geometry" />
81
- </mxCell>
82
- <mxCell id="0ipz06AKfEBxF18oT8nj-23" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0.596;exitY=1.033;exitDx=0;exitDy=0;exitPerimeter=0;" parent="1" source="0ipz06AKfEBxF18oT8nj-22" target="0ipz06AKfEBxF18oT8nj-8" edge="1">
83
- <mxGeometry relative="1" as="geometry">
84
- <mxPoint x="281" y="2490" as="sourcePoint" />
85
- <mxPoint x="281" y="2430" as="targetPoint" />
86
- </mxGeometry>
87
- </mxCell>
88
- <mxCell id="0ipz06AKfEBxF18oT8nj-24" value="CRM, SQL, Product KB" style="ellipse;whiteSpace=wrap;html=1;" parent="1" vertex="1">
89
- <mxGeometry x="650" y="2800" width="80" height="80" as="geometry" />
90
- </mxCell>
91
- <mxCell id="0ipz06AKfEBxF18oT8nj-25" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0;exitY=0.5;exitDx=0;exitDy=0;entryX=1;entryY=0.5;entryDx=0;entryDy=0;" parent="1" source="0ipz06AKfEBxF18oT8nj-17" target="0ipz06AKfEBxF18oT8nj-3" edge="1">
92
- <mxGeometry relative="1" as="geometry">
93
- <mxPoint x="620.5" y="2690" as="sourcePoint" />
94
- <mxPoint x="520.5" y="2690" as="targetPoint" />
95
- </mxGeometry>
96
- </mxCell>
97
- <mxCell id="0ipz06AKfEBxF18oT8nj-26" value="Yes" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];" parent="0ipz06AKfEBxF18oT8nj-25" vertex="1" connectable="0">
98
- <mxGeometry x="-0.1183" y="-5" relative="1" as="geometry">
99
- <mxPoint as="offset" />
100
- </mxGeometry>
101
- </mxCell>
102
- <mxCell id="0ipz06AKfEBxF18oT8nj-27" value="" style="endArrow=classic;html=1;rounded=0;exitX=0.5;exitY=1;exitDx=0;exitDy=0;entryX=1;entryY=0;entryDx=0;entryDy=0;" parent="1" source="0ipz06AKfEBxF18oT8nj-15" target="0ipz06AKfEBxF18oT8nj-8" edge="1">
103
- <mxGeometry width="50" height="50" relative="1" as="geometry">
104
- <mxPoint x="520" y="2980" as="sourcePoint" />
105
- <mxPoint x="570" y="2930" as="targetPoint" />
106
- <Array as="points">
107
- <mxPoint x="470" y="2930" />
108
- <mxPoint x="770" y="2930" />
109
- <mxPoint x="770" y="2690" />
110
- <mxPoint x="770" y="2450" />
111
- <mxPoint x="513" y="2450" />
112
- </Array>
113
- </mxGeometry>
114
- </mxCell>
115
- <mxCell id="0ipz06AKfEBxF18oT8nj-28" value="Mail / WhatsApp /..." style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];" parent="0ipz06AKfEBxF18oT8nj-27" vertex="1" connectable="0">
116
- <mxGeometry x="-0.6717" y="3" relative="1" as="geometry">
117
- <mxPoint as="offset" />
118
- </mxGeometry>
119
- </mxCell>
120
- <mxCell id="0ipz06AKfEBxF18oT8nj-29" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=0;orthogonalLoop=1;jettySize=auto;html=1;" parent="1" source="0ipz06AKfEBxF18oT8nj-31" target="0ipz06AKfEBxF18oT8nj-32" edge="1">
121
- <mxGeometry relative="1" as="geometry" />
122
- </mxCell>
123
- <mxCell id="0ipz06AKfEBxF18oT8nj-30" value="slack / discord / teams" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];" parent="0ipz06AKfEBxF18oT8nj-29" vertex="1" connectable="0">
124
- <mxGeometry x="-0.3" y="2" relative="1" as="geometry">
125
- <mxPoint as="offset" />
126
- </mxGeometry>
127
- </mxCell>
128
- <mxCell id="0ipz06AKfEBxF18oT8nj-31" value="Fetch Relevant historical data &amp;amp; BP" style="whiteSpace=wrap;html=1;" parent="1" vertex="1">
129
- <mxGeometry x="217.5" y="2810" width="120" height="60" as="geometry" />
130
- </mxCell>
131
- <mxCell id="0ipz06AKfEBxF18oT8nj-32" value="Recommendations to Agent" style="whiteSpace=wrap;html=1;fillColor=#dae8fc;strokeColor=#6c8ebf;" parent="1" vertex="1">
132
- <mxGeometry x="217.5" y="2950" width="120" height="60" as="geometry" />
133
- </mxCell>
134
- <mxCell id="1TZoFbZY8AwqjJc08LRQ-1" value="email, customer name, contract id, date, category, summary, issue category,T&amp;amp;C, Process descriptions, customer history, issue summary" style="text;html=1;align=center;verticalAlign=middle;resizable=0;points=[];autosize=1;strokeColor=none;fillColor=none;" vertex="1" parent="1">
135
- <mxGeometry x="265" y="3028" width="770" height="30" as="geometry" />
136
- </mxCell>
137
- </root>
138
- </mxGraphModel>
139
- </diagram>
140
- </mxfile>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rag_app/create_embedding.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # embeddings functions
2
+ #from langchain_community.vectorstores import FAISS
3
+ #from langchain_community.document_loaders import ReadTheDocsLoader
4
+ #from langchain_community.vectorstores.utils import filter_complex_metadata
5
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
6
+ from langchain_huggingface import HuggingFaceEmbeddings
7
+ import time
8
+ from langchain_core.documents import Document
9
+
10
+
11
+ def create_embeddings(
12
+ docs: list[Document],
13
+ chunk_size:int = 500,
14
+ chunk_overlap:int = 50,
15
+ embedding_model: str = "sentence-transformers/multi-qa-mpnet-base-dot-v1",
16
+ ):
17
+ """given a sequence of `Document` objects this fucntion will
18
+ generate embeddings for it.
19
+
20
+ ## argument
21
+ :params docs (list[Document]) -> list of `list[Document]`
22
+ :params chunk_size (int) -> chunk size in which documents are chunks, defaults to 500
23
+ :params chunk_overlap (int) -> the amount of token that will be overlapped between chunks, defaults to 50
24
+ :params embedding_model (str) -> the huggingspace model that will embed the documents
25
+ ## Return
26
+ Tuple of embedding and chunks
27
+ """
28
+
29
+
30
+ text_splitter = RecursiveCharacterTextSplitter(
31
+ separators=["\n\n", "\n", "(?<=\. )", " ", ""],
32
+ chunk_size = chunk_size,
33
+ chunk_overlap = chunk_overlap,
34
+ length_function = len,
35
+ )
36
+
37
+ # Stage one: read all the docs, split them into chunks.
38
+ st = time.time()
39
+ print('Loading documents and creating chunks ...')
40
+
41
+ # Split each document into chunks using the configured text splitter
42
+ chunks = text_splitter.create_documents([doc.page_content for doc in docs], metadatas=[doc.metadata for doc in docs])
43
+ et = time.time() - st
44
+ print(f'Time taken to chunk {len(docs)} documents: {et} seconds.')
45
+
46
+ #Stage two: embed the docs.
47
+ embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
48
+ print(f"created a total of {len(chunks)} chunks")
49
+
50
+ return embeddings,chunks
rag_app/generate_summary.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_huggingface import HuggingFaceEndpoint
2
+ from langchain_core.prompts import PromptTemplate
3
+ from langchain_core.output_parsers import StrOutputParser
4
+ import json
5
+ from dotenv import load_dotenv
6
+ import os
7
+
8
+ load_dotenv()
9
+
10
+ HF_API_TOKEN = os.getenv('HUGGINGFACE_API_TOKEN')
11
+ model_id=os.getenv('LLM_MODEL')
12
+
13
+ LLM = HuggingFaceEndpoint(
14
+ repo_id=model_id,
15
+ temperature=0.1,
16
+ max_new_tokens=512,
17
+ repetition_penalty=1.2,
18
+ return_full_text=False,
19
+ huggingfacehub_api_token=HF_API_TOKEN)
20
+
21
+ def generate_keywords(document:dict,
22
+ llm_model:HuggingFaceEndpoint = LLM) -> str:
23
+ """ Generate a meaningful list of meta keywords for the provided document or chunk"""
24
+
25
+ template = (
26
+ """
27
+ You are a SEO expert bot. Your task is to craft a meaningful list of 5 keywords to organize documents.
28
+ The keywords should help us in searching and retrieving the documents later.
29
+
30
+ You will only respond with the clear, concise and meaningful 5 of keywords separated by comma.
31
+
32
+ <<<
33
+ Document: {document}
34
+ >>>
35
+
36
+ Keywords:
37
+ """
38
+ )
39
+
40
+ prompt = PromptTemplate.from_template(template=template)
41
+
42
+ chain = prompt | llm_model | StrOutputParser()
43
+ result = chain.invoke({'document': document})
44
+ return result.strip()
45
+
46
+ def generate_description(document:dict,
47
+ llm_model:HuggingFaceEndpoint = LLM) -> str:
48
+ """ Generate a meaningful document description based on document content """
49
+
50
+ template = (
51
+ """
52
+ You are a SEO expert bot. Your task is to craft a meaningful summary to descripe and organize documents.
53
+ The description should be a meaningful summary of the document's content and help us in searching and retrieving the documents later.
54
+
55
+ You will only respond with the clear, concise and meaningful description.
56
+
57
+ <<<
58
+ Document: {document}
59
+ >>>
60
+
61
+ Description:
62
+ """
63
+ )
64
+
65
+ prompt = PromptTemplate.from_template(template=template)
66
+
67
+ chain = prompt | llm_model | StrOutputParser()
68
+ result = chain.invoke({'document': document})
69
+ return result.strip()
rag_app/get_db_retriever.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # retriever and qa_chain function
2
+
3
+ # HF libraries
4
+ from langchain.llms import HuggingFaceHub
5
+ from langchain.embeddings import HuggingFaceHubEmbeddings
6
+ # vectorestore
7
+ from langchain.vectorstores import FAISS
8
+ # retrieval chain
9
+ from langchain.chains import RetrievalQA
10
+ # prompt template
11
+ from langchain.prompts import PromptTemplate
12
+ from langchain.memory import ConversationBufferMemory
13
+
14
+
15
+ def get_db_retriever(vector_db:str=None):
16
+ model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
17
+ embeddings = HuggingFaceHubEmbeddings(repo_id=model_name)
18
+
19
+ #db = Chroma(persist_directory="./vectorstore/lc-chroma-multi-mpnet-500", embedding_function=embeddings)
20
+ #db.get()
21
+ if not vector_db:
22
+ FAISS_INDEX_PATH='./vectorstore/py-faiss-multi-mpnet-500'
23
+ else:
24
+ FAISS_INDEX_PATH=vector_db
25
+ db = FAISS.load_local(FAISS_INDEX_PATH, embeddings)
26
+
27
+ retriever = db.as_retriever()
28
+
29
+ return retriever
rag_app/handle_vector_store.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # vectorization functions
2
+ from langchain_community.vectorstores import FAISS
3
+ from langchain_community.vectorstores import Chroma
4
+ from langchain_community.document_loaders import ReadTheDocsLoader
5
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
6
+ from langchain_huggingface import HuggingFaceEmbeddings
7
+ from langchain_community.retrievers import BM25Retriever
8
+ from rag_app.create_embedding import create_embeddings
9
+ from rag_app.generate_summary import generate_description, generate_keywords
10
+ import time
11
+ import os
12
+ from dotenv import load_dotenv
13
+
14
+ def build_vector_store(
15
+ docs: list,
16
+ db_path: str,
17
+ embedding_model: str,
18
+ new_db:bool=False,
19
+ chunk_size:int=500,
20
+ chunk_overlap:int=50,
21
+ ):
22
+ """
23
+
24
+ """
25
+
26
+ if db_path is None:
27
+ FAISS_INDEX_PATH = os.getenv("FAISS_INDEX_PATH")
28
+ else:
29
+ FAISS_INDEX_PATH = db_path
30
+
31
+ embeddings,chunks = create_embeddings(docs, chunk_size, chunk_overlap, embedding_model)
32
+ for chunk in chunks:
33
+ keywords=generate_keywords(chunk)
34
+ description=generate_description(chunk)
35
+ chunk.metadata['chunk_keywords']=keywords
36
+ chunk.metadata['chunk_description']=description
37
+
38
+ #load chunks into vector store
39
+ print(f'Loading chunks into faiss vector store ...')
40
+ st = time.time()
41
+ if new_db:
42
+ db_faiss = FAISS.from_documents(chunks, embeddings)
43
+ bm25_retriever = BM25Retriever.from_documents(chunks)
44
+ else:
45
+ db_faiss = FAISS.add_documents(chunks, embeddings)
46
+ bm25_retriever = BM25Retriever.add_documents(chunks)
47
+ db_faiss.save_local(FAISS_INDEX_PATH)
48
+ et = time.time() - st
49
+ print(f'Time taken: {et} seconds.')
50
+
51
+ print(f'Loading chunks into chroma vector store ...')
52
+ st = time.time()
53
+ persist_directory='./vectorstore/chroma-insurance-agent-1500'
54
+ db_chroma = Chroma.from_documents(chunks, embeddings, persist_directory=persist_directory)
55
+ et = time.time() - st
56
+ print(f'Time taken: {et} seconds.')
57
+ result = f"built vectore store at {FAISS_INDEX_PATH}"
58
+ return result
59
+
60
+
61
+ # # Path for saving the FAISS index
62
+ # FAISS_INDEX_PATH = "./vectorstore/lc-faiss-multi-mpnet-500"
63
+
64
+ # try:
65
+ # # Stage two: Vectorization of the document chunks
66
+ # model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1" # Model used for embedding
67
+
68
+ # # Initialize HuggingFace embeddings with the specified model
69
+ # embeddings = HuggingFaceEmbeddings(model_name=model_name)
70
+
71
+ # print(f'Loading chunks into vector store ...')
72
+ # st = time.time() # Start time for performance measurement
73
+ # # Create a FAISS vector store from the document chunks and save it locally
74
+ # db = FAISS.from_documents(filter_complex_metadata(chunks), embeddings)
75
+ # db.save_local(FAISS_INDEX_PATH)
76
+ # et = time.time() - st # Calculate time taken for vectorization
77
+ # print(f'Time taken for vectorization and saving: {et} seconds.')
78
+ # except Exception as e:
79
+ # print(f"Error during vectorization or FAISS index saving: {e}", file=sys.stderr)
80
+
81
+ # alternatively download a preparaed vectorized index from S3 and load the index into vectorstore
82
+ # Import necessary libraries for AWS S3 interaction, file handling, and FAISS vector stores
rag_app/load_data_from_urls.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # documents loader function
2
+ from langchain_community.document_loaders import RecursiveUrlLoader
3
+ from bs4 import BeautifulSoup as Soup
4
+ from validators import url as url_validator
5
+ from langchain_core.documents import Document
6
+ import time
7
+ import logging
8
+ import sys
9
+
10
+ logger = logging.getLogger(__name__)
11
+
12
+ def load_docs_from_urls(
13
+ urls: list = ["https://docs.python.org/3/"],
14
+ max_depth: int = 5,
15
+ ) -> list[Document]:
16
+ """
17
+ Load documents from a list of URLs.
18
+
19
+ ## Args:
20
+ urls (list, optional): A list of URLs to load documents from. Defaults to ["https://docs.python.org/3/"].
21
+ max_depth (int, optional): Maximum depth to recursively load documents from each URL. Defaults to 5.
22
+
23
+ ## Returns:
24
+ list: A list of documents loaded from the given URLs.
25
+
26
+ ## Raises:
27
+ ValueError: If any URL in the provided list is invalid.
28
+ """
29
+ stf = time.time() # Start time for performance measurement
30
+ docs = []
31
+ for url in urls:
32
+ st = time.time() # Start time for outer performance measurement
33
+ if not url_validator(url):
34
+ raise ValueError(f"Invalid URL: {url}")
35
+ try:
36
+ st = time.time() # Start time for inner performance measurement
37
+ loader = RecursiveUrlLoader(url=url, max_depth=max_depth, extractor=lambda x: Soup(x, "html.parser").text)
38
+ docs.extend(loader.load())
39
+
40
+ et = time.time() - st # Calculate time taken for splitting
41
+ logMessage=f'Time taken for downloading documents from {url}: {et} seconds.'
42
+ logger.info(logMessage)
43
+ print(logMessage)
44
+ except Exception as e:
45
+ logMessage=f"Failed to load or parse the URL {url}. Error: {e}"
46
+ logger.error(logMessage)
47
+ print(logMessage, file=sys.stderr)
48
+ etf = time.time() - stf # Calculate time taken for scrapping all URLs
49
+ print(f'Total time taken for downloading {len(docs)} documents: {etf} seconds.')
50
+ return docs
rag_app/load_vector_stores.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # preprocessed vectorstore retrieval
2
+ import boto3
3
+ from botocore import UNSIGNED
4
+ from botocore.client import Config
5
+ import zipfile
6
+ from langchain_community.vectorstores import FAISS
7
+ from langchain_community.vectorstores import Chroma
8
+ from langchain_huggingface import HuggingFaceEmbeddings
9
+ from dotenv import load_dotenv
10
+ import os
11
+ import sys
12
+ import logging
13
+
14
+ # Load environment variables from a .env file
15
+ config = load_dotenv(".env")
16
+
17
+ # Retrieve the Hugging Face API token from environment variables
18
+ HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
19
+ S3_LOCATION = os.getenv("S3_LOCATION")
20
+ FAISS_VS_NAME = os.getenv("FAISS_VS_NAME")
21
+ FAISS_INDEX_PATH = os.getenv("FAISS_INDEX_PATH")
22
+ CHROMA_DIRECTORY = os.getenv("CHROMA_DIRECTORY")
23
+ CHROMA_VS_NAME = os.getenv("CHROMA_VS_NAME")
24
+ EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL")
25
+
26
+ model_name = EMBEDDING_MODEL
27
+ #model_kwargs = {"device": "cuda"}
28
+
29
+ embeddings = HuggingFaceEmbeddings(
30
+ model_name=model_name,
31
+ # model_kwargs=model_kwargs
32
+ )
33
+
34
+ ## FAISS
35
+ def get_faiss_vs():
36
+ # Initialize an S3 client with unsigned configuration for public access
37
+ s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
38
+
39
+ # Define the destination for the downloaded file
40
+ VS_DESTINATION = FAISS_INDEX_PATH + ".zip"
41
+ try:
42
+ # Download the pre-prepared vectorized index from the S3 bucket
43
+ print("Downloading the pre-prepared vectorized index from S3...")
44
+ s3.download_file(S3_LOCATION, FAISS_VS_NAME, VS_DESTINATION)
45
+
46
+ # Extract the downloaded zip file
47
+ with zipfile.ZipFile(VS_DESTINATION, 'r') as zip_ref:
48
+ zip_ref.extractall('./vectorstore/')
49
+ print("Download and extraction completed.")
50
+ return FAISS.load_local(FAISS_INDEX_PATH, embeddings)
51
+
52
+ except Exception as e:
53
+ print(f"Error during downloading or extracting from S3: {e}", file=sys.stderr)
54
+ #faissdb = FAISS.load_local(FAISS_INDEX_PATH, embeddings)
55
+
56
+
57
+ ## Chroma DB
58
+ def get_chroma_vs():
59
+ # Initialize an S3 client with unsigned configuration for public access
60
+ s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
61
+
62
+ VS_DESTINATION = CHROMA_DIRECTORY+".zip"
63
+ try:
64
+ s3.download_file(S3_LOCATION, CHROMA_VS_NAME, VS_DESTINATION)
65
+ with zipfile.ZipFile(VS_DESTINATION, 'r') as zip_ref:
66
+ zip_ref.extractall('./vectorstore/')
67
+ chromadb = Chroma(persist_directory=CHROMA_DIRECTORY, embedding_function=embeddings)
68
+ chromadb.get()
69
+ except Exception as e:
70
+ print(f"Error during downloading or extracting from S3: {e}", file=sys.stderr)
rag_app/react_agent.py ADDED
File without changes
rag_app/simple_qa_chain.py ADDED
File without changes
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ langchain
2
+ langchain-community
3
+ langchain-HuggingFace
4
+ langchain-text-splitters
5
+ beautifulsoup4
6
+ faiss-cpu
7
+ chromadb
8
+ validators
9
+ sentence_transformers
10
+ typing-extensions
11
+ unstructured
12
+ gradio
13
+ boto3
test_this.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from rag_app.load_data_from_urls import load_docs_from_urls
2
+ from rag_app.create_embedding import create_embeddings
3
+ from rag_app.generate_summary import generate_description, generate_keywords
4
+ from rag_app.handle_vector_store import build_vector_store
5
+
6
+ docs = load_docs_from_urls(["https://www.wuerttembergische.de/"],5)
7
+
8
+ for doc in docs:
9
+ keywords=generate_keywords(doc)
10
+ description=generate_description(doc)
11
+ doc.metadata['keywords']=keywords
12
+ doc.metadata['description']=description
13
+
14
+ build_vector_store(docs, './vectorstore/faiss-insurance-agent-1500','sentence-transformers/multi-qa-mpnet-base-dot-v1',True,1500,150)
15
+
16
+
17
+ #print(create_embeddings(docs))
vectorstore/placeholder.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ This file keeps the folder from being deleted for now