Spaces:
Running
Running
vector store for windows
Browse files- core-langchain-rag.py +1 -1
- rag_app/__init__.py +0 -0
- rag_app/load_vector_stores.py +35 -2
- rag_app/metadata.ipynb +170 -0
- rag_app/metadata_filtering.py +29 -0
core-langchain-rag.py
CHANGED
@@ -214,7 +214,7 @@ def generate_qa_retriever(history: dict, question: str, llm_model:HuggingFaceEnd
|
|
214 |
template = """
|
215 |
You are a friendly insurance product advisor, your task is to help customers find the best products from Württembergische GmbH.\
|
216 |
You help the user find the answers to all his questions. Answer in short and simple terms and offer to explain the product and terms to the user.\
|
217 |
-
Respond only using the provided context (delimited by <ctx></ctx>) and only in German or
|
218 |
Use the chat history (delimited by <hs></hs>) to help find the best product for the user:
|
219 |
------
|
220 |
<ctx>
|
|
|
214 |
template = """
|
215 |
You are a friendly insurance product advisor, your task is to help customers find the best products from Württembergische GmbH.\
|
216 |
You help the user find the answers to all his questions. Answer in short and simple terms and offer to explain the product and terms to the user.\
|
217 |
+
Respond only using the provided context (delimited by <ctx></ctx>) and only in German or English, depending on the question's language.
|
218 |
Use the chat history (delimited by <hs></hs>) to help find the best product for the user:
|
219 |
------
|
220 |
<ctx>
|
rag_app/__init__.py
ADDED
File without changes
|
rag_app/load_vector_stores.py
CHANGED
@@ -10,6 +10,7 @@ from dotenv import load_dotenv
|
|
10 |
import os
|
11 |
import sys
|
12 |
import logging
|
|
|
13 |
|
14 |
# Load environment variables from a .env file
|
15 |
config = load_dotenv(".env")
|
@@ -38,6 +39,7 @@ def get_faiss_vs():
|
|
38 |
|
39 |
# Define the destination for the downloaded file
|
40 |
VS_DESTINATION = FAISS_INDEX_PATH + ".zip"
|
|
|
41 |
try:
|
42 |
# Download the pre-prepared vectorized index from the S3 bucket
|
43 |
print("Downloading the pre-prepared vectorized index from S3...")
|
@@ -51,7 +53,32 @@ def get_faiss_vs():
|
|
51 |
|
52 |
except Exception as e:
|
53 |
print(f"Error during downloading or extracting from S3: {e}", file=sys.stderr)
|
54 |
-
#faissdb = FAISS.load_local(FAISS_INDEX_PATH, embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
|
57 |
## Chroma DB
|
@@ -67,4 +94,10 @@ def get_chroma_vs():
|
|
67 |
chromadb = Chroma(persist_directory=CHROMA_DIRECTORY, embedding_function=embeddings)
|
68 |
chromadb.get()
|
69 |
except Exception as e:
|
70 |
-
print(f"Error during downloading or extracting from S3: {e}", file=sys.stderr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
import os
|
11 |
import sys
|
12 |
import logging
|
13 |
+
from pathlib import Path
|
14 |
|
15 |
# Load environment variables from a .env file
|
16 |
config = load_dotenv(".env")
|
|
|
39 |
|
40 |
# Define the destination for the downloaded file
|
41 |
VS_DESTINATION = FAISS_INDEX_PATH + ".zip"
|
42 |
+
|
43 |
try:
|
44 |
# Download the pre-prepared vectorized index from the S3 bucket
|
45 |
print("Downloading the pre-prepared vectorized index from S3...")
|
|
|
53 |
|
54 |
except Exception as e:
|
55 |
print(f"Error during downloading or extracting from S3: {e}", file=sys.stderr)
|
56 |
+
# faissdb = FAISS.load_local(FAISS_INDEX_PATH, embeddings)
|
57 |
+
|
58 |
+
|
59 |
+
def get_faiss_vs_from_s3(s3_loc:str,
|
60 |
+
s3_vs_name:str,
|
61 |
+
vs_dir:str='vectorstore') -> None:
|
62 |
+
""" Download the FAISS vector store from S3 bucket
|
63 |
+
|
64 |
+
Args:
|
65 |
+
s3_loc (str): Name of the S3 bucket
|
66 |
+
s3_vs_name (str): Name of the file to be downloaded
|
67 |
+
vs_dir (str): The name of the directory where the file is to be saved
|
68 |
+
"""
|
69 |
+
# Initialize an S3 client with unsigned configuration for public access
|
70 |
+
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
|
71 |
+
# Destination folder
|
72 |
+
vs_dir_path = Path("..") / vs_dir
|
73 |
+
assert vs_dir_path.is_dir(), "Cannot find vs_dir folder"
|
74 |
+
try:
|
75 |
+
vs_destination = Path("..") / vs_dir / "faiss-insurance-agent-500.zip"
|
76 |
+
s3.download_file(s3_loc, s3_vs_name, vs_destination)
|
77 |
+
# Extract the downloaded zip file
|
78 |
+
with zipfile.ZipFile(file=vs_destination, mode='r') as zip_ref:
|
79 |
+
zip_ref.extractall(path=vs_dir_path.as_posix())
|
80 |
+
except Exception as e:
|
81 |
+
print(f"Error during downloading or extracting from S3: {e}", file=sys.stderr)
|
82 |
|
83 |
|
84 |
## Chroma DB
|
|
|
94 |
chromadb = Chroma(persist_directory=CHROMA_DIRECTORY, embedding_function=embeddings)
|
95 |
chromadb.get()
|
96 |
except Exception as e:
|
97 |
+
print(f"Error during downloading or extracting from S3: {e}", file=sys.stderr)
|
98 |
+
|
99 |
+
|
100 |
+
if __name__ == "__main__":
|
101 |
+
# get_faiss_vs_from_s3(s3_loc=S3_LOCATION, s3_vs_name=FAISS_VS_NAME)
|
102 |
+
pass
|
103 |
+
|
rag_app/metadata.ipynb
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from pathlib import Path\n",
|
10 |
+
"from langchain_community.vectorstores import FAISS\n",
|
11 |
+
"from dotenv import load_dotenv\n",
|
12 |
+
"import os\n",
|
13 |
+
"from langchain_huggingface import HuggingFaceEmbeddings"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 3,
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [
|
21 |
+
{
|
22 |
+
"data": {
|
23 |
+
"text/plain": [
|
24 |
+
"True"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
"execution_count": 3,
|
28 |
+
"metadata": {},
|
29 |
+
"output_type": "execute_result"
|
30 |
+
}
|
31 |
+
],
|
32 |
+
"source": [
|
33 |
+
"load_dotenv()"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": 5,
|
39 |
+
"metadata": {},
|
40 |
+
"outputs": [],
|
41 |
+
"source": [
|
42 |
+
"HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFCEHUB_API_TOKEN')\n",
|
43 |
+
"EMBEDDING_MODEL = os.getenv(\"EMBEDDING_MODEL\")"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"execution_count": null,
|
49 |
+
"metadata": {},
|
50 |
+
"outputs": [],
|
51 |
+
"source": [
|
52 |
+
"embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": 7,
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"folder_path = Path('..') / \"vectorstore/faiss-insurance-agent-500\"\n",
|
62 |
+
"faissdb = FAISS.load_local(folder_path=str(folder_path.resolve()),\n",
|
63 |
+
" embeddings=embeddings,\n",
|
64 |
+
" allow_dangerous_deserialization=True) "
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": 24,
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [
|
72 |
+
{
|
73 |
+
"name": "stdout",
|
74 |
+
"output_type": "stream",
|
75 |
+
"text": [
|
76 |
+
"Content: Die private Haftpflichtversicherung...\n",
|
77 |
+
"Metadata: {'source': 'https://www.wuerttembergische.de/versicherungen/stadt/wuppertal/', 'content_type': 'text/html; charset=UTF-8', 'title': 'Versicherung in Wuppertal', 'description': 'Ihre Versicherungsagentur in Wuppertal: Kommen Sie zur Württembergischen Versicherung und profitieren Sie von einer persönlichen Beratung und ausgezeichnetem Service. ', 'language': 'de'}\n",
|
78 |
+
"---\n",
|
79 |
+
"Content: Haftpflichtversicherung...\n",
|
80 |
+
"Metadata: {'source': 'https://www.wuerttembergische.de/wohnen/hausratversicherung/sengschaden/', 'content_type': 'text/html; charset=UTF-8', 'title': 'Sengschäden: So schützt Sie Ihre Hausrat- und Wohngebäudeversicherung', 'description': 'Deckt Ihre Hausratversicherung Sengschäden ab? Finden Sie heraus, wie Sie bei Schäden durch Glut oder Hitze ohne direktes Feuer geschützt sind.\\n', 'language': 'de'}\n",
|
81 |
+
"---\n",
|
82 |
+
"Content: Die Leistungen unserer privaten Haftpflichtversich...\n",
|
83 |
+
"Metadata: {'source': 'https://www.wuerttembergische.de/existenz/private-haftpflichtversicherung/drohnen-versichern/', 'content_type': 'text/html; charset=UTF-8', 'title': 'Drohnen über die private Haftpflicht versichern', 'description': 'Müssen Drohnen versichert sein? Welcher Tarif ist der beste? Erfahren Sie hier die wichtigsten Informationen rund ums Thema Drohne versichern.', 'language': 'de'}\n",
|
84 |
+
"---\n",
|
85 |
+
"Content: Das kann ohne private Haftpflichtversicherung pass...\n",
|
86 |
+
"Metadata: {'source': 'https://www.wuerttembergische.de/existenz/private-haftpflichtversicherung/pflicht/', 'content_type': 'text/html; charset=UTF-8', 'title': 'Ist die private Haftpflichtversicherung Pflicht oder freiwillig?', 'description': 'Ist eine Privathaftpflichtversicherung gesetzlich vorgeschrieben? Welche Haftpflichtversicherung Pflicht sind und welche freiwillig - das erfahren Sie hier.', 'language': 'de'}\n",
|
87 |
+
"---\n",
|
88 |
+
"Content: Private Haftpflicht: keine Pflichtversicherung\n",
|
89 |
+
"Fre...\n",
|
90 |
+
"Metadata: {'source': 'https://www.wuerttembergische.de/existenz/private-haftpflichtversicherung/pflicht/', 'content_type': 'text/html; charset=UTF-8', 'title': 'Ist die private Haftpflichtversicherung Pflicht oder freiwillig?', 'description': 'Ist eine Privathaftpflichtversicherung gesetzlich vorgeschrieben? Welche Haftpflichtversicherung Pflicht sind und welche freiwillig - das erfahren Sie hier.', 'language': 'de'}\n",
|
91 |
+
"---\n"
|
92 |
+
]
|
93 |
+
}
|
94 |
+
],
|
95 |
+
"source": [
|
96 |
+
"# Perform a similarity search with an empty query to get random documents\n",
|
97 |
+
"documents = faissdb.similarity_search(\"Private Haftpflichtversicherung\", k=5)\n",
|
98 |
+
"\n",
|
99 |
+
"for doc in documents:\n",
|
100 |
+
" print(f\"Content: {doc.page_content[:50]}...\") # Print first 50 chars of content\n",
|
101 |
+
" print(f\"Metadata: {doc.metadata}\")\n",
|
102 |
+
" print(\"---\")"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": 19,
|
108 |
+
"metadata": {},
|
109 |
+
"outputs": [
|
110 |
+
{
|
111 |
+
"name": "stdout",
|
112 |
+
"output_type": "stream",
|
113 |
+
"text": [
|
114 |
+
"Number of entries in the database: 62496\n"
|
115 |
+
]
|
116 |
+
}
|
117 |
+
],
|
118 |
+
"source": [
|
119 |
+
"num_entries = len(faissdb.index_to_docstore_id)\n",
|
120 |
+
"print(f\"Number of entries in the database: {num_entries}\")"
|
121 |
+
]
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"cell_type": "code",
|
125 |
+
"execution_count": 20,
|
126 |
+
"metadata": {},
|
127 |
+
"outputs": [
|
128 |
+
{
|
129 |
+
"name": "stdout",
|
130 |
+
"output_type": "stream",
|
131 |
+
"text": [
|
132 |
+
"Number of entries in the database: 62496\n"
|
133 |
+
]
|
134 |
+
}
|
135 |
+
],
|
136 |
+
"source": [
|
137 |
+
"num_entries = faissdb.index.ntotal\n",
|
138 |
+
"print(f\"Number of entries in the database: {num_entries}\")"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"cell_type": "code",
|
143 |
+
"execution_count": null,
|
144 |
+
"metadata": {},
|
145 |
+
"outputs": [],
|
146 |
+
"source": []
|
147 |
+
}
|
148 |
+
],
|
149 |
+
"metadata": {
|
150 |
+
"kernelspec": {
|
151 |
+
"display_name": "venv",
|
152 |
+
"language": "python",
|
153 |
+
"name": "python3"
|
154 |
+
},
|
155 |
+
"language_info": {
|
156 |
+
"codemirror_mode": {
|
157 |
+
"name": "ipython",
|
158 |
+
"version": 3
|
159 |
+
},
|
160 |
+
"file_extension": ".py",
|
161 |
+
"mimetype": "text/x-python",
|
162 |
+
"name": "python",
|
163 |
+
"nbconvert_exporter": "python",
|
164 |
+
"pygments_lexer": "ipython3",
|
165 |
+
"version": "3.11.4"
|
166 |
+
}
|
167 |
+
},
|
168 |
+
"nbformat": 4,
|
169 |
+
"nbformat_minor": 2
|
170 |
+
}
|
rag_app/metadata_filtering.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from langchain_community.vectorstores import FAISS
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
import os
|
5 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
6 |
+
|
7 |
+
|
8 |
+
load_dotenv(".env")
|
9 |
+
|
10 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
11 |
+
EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL")
|
12 |
+
|
13 |
+
|
14 |
+
if __name__ == "__main__":
|
15 |
+
|
16 |
+
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
|
17 |
+
|
18 |
+
folder_path = Path('..') / "vectorstore/faiss-insurance-agent-500"
|
19 |
+
|
20 |
+
print(f'{Path(folder_path).exists() = }')
|
21 |
+
|
22 |
+
faissdb = FAISS.load_local(folder_path=str(folder_path.resolve()),
|
23 |
+
embeddings=embeddings,
|
24 |
+
allow_dangerous_deserialization=True)
|
25 |
+
|
26 |
+
documents = faissdb.get(list(range(5)))
|
27 |
+
|
28 |
+
for doc in documents:
|
29 |
+
print(f"Metadata: {doc.metadata}")
|