Spaces:
Sleeping
Sleeping
making classes and test for vectorstore handling
Browse files
pytest.ini
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[pytest]
|
| 2 |
+
pythonpath = .
|
rag_app/vector_store_handler/__init__.py
ADDED
|
File without changes
|
rag_app/vector_store_handler/vectorstores.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import ABC, abstractmethod
|
| 2 |
+
from langchain.vectorstores import Chroma, FAISS
|
| 3 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 5 |
+
from langchain.document_loaders import TextLoader
|
| 6 |
+
|
| 7 |
+
class BaseVectorStore(ABC):
|
| 8 |
+
"""
|
| 9 |
+
Abstract base class for vector stores.
|
| 10 |
+
|
| 11 |
+
This class defines the interface for vector stores and implements
|
| 12 |
+
common functionality.
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
def __init__(self, embedding_model, persist_directory=None):
|
| 16 |
+
"""
|
| 17 |
+
Initialize the BaseVectorStore.
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
embedding_model: The embedding model to use for vectorizing text.
|
| 21 |
+
persist_directory (str, optional): Directory to persist the vector store.
|
| 22 |
+
"""
|
| 23 |
+
self.persist_directory = persist_directory
|
| 24 |
+
self.embeddings = embedding_model
|
| 25 |
+
self.vectorstore = None
|
| 26 |
+
|
| 27 |
+
def load_and_process_documents(self, file_path, chunk_size=1000, chunk_overlap=0):
|
| 28 |
+
"""
|
| 29 |
+
Load and process documents from a file.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
file_path (str): Path to the file to load.
|
| 33 |
+
chunk_size (int): Size of text chunks for processing.
|
| 34 |
+
chunk_overlap (int): Overlap between chunks.
|
| 35 |
+
|
| 36 |
+
Returns:
|
| 37 |
+
list: Processed documents.
|
| 38 |
+
"""
|
| 39 |
+
loader = TextLoader(file_path)
|
| 40 |
+
documents = loader.load()
|
| 41 |
+
text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
| 42 |
+
return text_splitter.split_documents(documents)
|
| 43 |
+
|
| 44 |
+
@abstractmethod
|
| 45 |
+
def create_vectorstore(self, texts):
|
| 46 |
+
"""
|
| 47 |
+
Create a new vector store from the given texts.
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
texts (list): List of texts to vectorize and store.
|
| 51 |
+
"""
|
| 52 |
+
pass
|
| 53 |
+
|
| 54 |
+
@abstractmethod
|
| 55 |
+
def load_existing_vectorstore(self):
|
| 56 |
+
"""
|
| 57 |
+
Load an existing vector store from the persist directory.
|
| 58 |
+
"""
|
| 59 |
+
pass
|
| 60 |
+
|
| 61 |
+
def similarity_search(self, query):
|
| 62 |
+
"""
|
| 63 |
+
Perform a similarity search on the vector store.
|
| 64 |
+
|
| 65 |
+
Args:
|
| 66 |
+
query (str): The query text to search for.
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
list: Search results.
|
| 70 |
+
|
| 71 |
+
Raises:
|
| 72 |
+
ValueError: If the vector store is not initialized.
|
| 73 |
+
"""
|
| 74 |
+
if not self.vectorstore:
|
| 75 |
+
raise ValueError("Vector store not initialized. Call create_vectorstore or load_existing_vectorstore first.")
|
| 76 |
+
return self.vectorstore.similarity_search(query)
|
| 77 |
+
|
| 78 |
+
@abstractmethod
|
| 79 |
+
def save(self):
|
| 80 |
+
"""
|
| 81 |
+
Save the current state of the vector store.
|
| 82 |
+
"""
|
| 83 |
+
pass
|
| 84 |
+
|
| 85 |
+
class ChromaVectorStore(BaseVectorStore):
|
| 86 |
+
"""
|
| 87 |
+
Implementation of BaseVectorStore using Chroma as the backend.
|
| 88 |
+
"""
|
| 89 |
+
|
| 90 |
+
def create_vectorstore(self, texts):
|
| 91 |
+
"""
|
| 92 |
+
Create a new Chroma vector store from the given texts.
|
| 93 |
+
|
| 94 |
+
Args:
|
| 95 |
+
texts (list): List of texts to vectorize and store.
|
| 96 |
+
"""
|
| 97 |
+
self.vectorstore = Chroma.from_documents(
|
| 98 |
+
texts,
|
| 99 |
+
self.embeddings,
|
| 100 |
+
persist_directory=self.persist_directory
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
def load_existing_vectorstore(self):
|
| 104 |
+
"""
|
| 105 |
+
Load an existing Chroma vector store from the persist directory.
|
| 106 |
+
|
| 107 |
+
Raises:
|
| 108 |
+
ValueError: If persist_directory is not set.
|
| 109 |
+
"""
|
| 110 |
+
if self.persist_directory:
|
| 111 |
+
self.vectorstore = Chroma(
|
| 112 |
+
persist_directory=self.persist_directory,
|
| 113 |
+
embedding_function=self.embeddings
|
| 114 |
+
)
|
| 115 |
+
else:
|
| 116 |
+
raise ValueError("Persist directory is required for loading Chroma.")
|
| 117 |
+
|
| 118 |
+
def save(self):
|
| 119 |
+
"""
|
| 120 |
+
Save the current state of the Chroma vector store.
|
| 121 |
+
|
| 122 |
+
Raises:
|
| 123 |
+
ValueError: If the vector store is not initialized.
|
| 124 |
+
"""
|
| 125 |
+
if not self.vectorstore:
|
| 126 |
+
raise ValueError("Vector store not initialized. Nothing to save.")
|
| 127 |
+
self.vectorstore.persist()
|
| 128 |
+
|
| 129 |
+
class FAISSVectorStore(BaseVectorStore):
|
| 130 |
+
"""
|
| 131 |
+
Implementation of BaseVectorStore using FAISS as the backend.
|
| 132 |
+
"""
|
| 133 |
+
|
| 134 |
+
def create_vectorstore(self, texts):
|
| 135 |
+
"""
|
| 136 |
+
Create a new FAISS vector store from the given texts.
|
| 137 |
+
|
| 138 |
+
Args:
|
| 139 |
+
texts (list): List of texts to vectorize and store.
|
| 140 |
+
"""
|
| 141 |
+
self.vectorstore = FAISS.from_documents(texts, self.embeddings)
|
| 142 |
+
|
| 143 |
+
def load_existing_vectorstore(self):
|
| 144 |
+
"""
|
| 145 |
+
Load an existing FAISS vector store from the persist directory.
|
| 146 |
+
|
| 147 |
+
Raises:
|
| 148 |
+
ValueError: If persist_directory is not set.
|
| 149 |
+
"""
|
| 150 |
+
if self.persist_directory:
|
| 151 |
+
self.vectorstore = FAISS.load_local(self.persist_directory, self.embeddings)
|
| 152 |
+
else:
|
| 153 |
+
raise ValueError("Persist directory is required for loading FAISS.")
|
| 154 |
+
|
| 155 |
+
def save(self):
|
| 156 |
+
"""
|
| 157 |
+
Save the current state of the FAISS vector store.
|
| 158 |
+
|
| 159 |
+
Raises:
|
| 160 |
+
ValueError: If the vector store is not initialized.
|
| 161 |
+
"""
|
| 162 |
+
if not self.vectorstore:
|
| 163 |
+
raise ValueError("Vector store not initialized. Nothing to save.")
|
| 164 |
+
self.vectorstore.save_local(self.persist_directory)
|
| 165 |
+
|
| 166 |
+
# Usage example:
|
| 167 |
+
def main():
|
| 168 |
+
"""
|
| 169 |
+
Example usage of the vector store classes.
|
| 170 |
+
"""
|
| 171 |
+
# Create an embedding model
|
| 172 |
+
embedding_model = OpenAIEmbeddings()
|
| 173 |
+
|
| 174 |
+
# Using Chroma
|
| 175 |
+
chroma_store = ChromaVectorStore(embedding_model, persist_directory="./chroma_store")
|
| 176 |
+
texts = chroma_store.load_and_process_documents("path/to/your/file.txt")
|
| 177 |
+
chroma_store.create_vectorstore(texts)
|
| 178 |
+
results = chroma_store.similarity_search("Your query here")
|
| 179 |
+
print("Chroma results:", results[0].page_content)
|
| 180 |
+
chroma_store.save()
|
| 181 |
+
|
| 182 |
+
# Load existing Chroma store
|
| 183 |
+
existing_chroma = ChromaVectorStore(embedding_model, persist_directory="./chroma_store")
|
| 184 |
+
existing_chroma.load_existing_vectorstore()
|
| 185 |
+
results = existing_chroma.similarity_search("Another query")
|
| 186 |
+
print("Existing Chroma results:", results[0].page_content)
|
| 187 |
+
|
| 188 |
+
# Using FAISS
|
| 189 |
+
faiss_store = FAISSVectorStore(embedding_model, persist_directory="./faiss_store")
|
| 190 |
+
texts = faiss_store.load_and_process_documents("path/to/your/file.txt")
|
| 191 |
+
faiss_store.create_vectorstore(texts)
|
| 192 |
+
results = faiss_store.similarity_search("Your query here")
|
| 193 |
+
print("FAISS results:", results[0].page_content)
|
| 194 |
+
faiss_store.save()
|
| 195 |
+
|
| 196 |
+
# Load existing FAISS store
|
| 197 |
+
existing_faiss = FAISSVectorStore(embedding_model, persist_directory="./faiss_store")
|
| 198 |
+
existing_faiss.load_existing_vectorstore()
|
| 199 |
+
results = existing_faiss.similarity_search("Another query")
|
| 200 |
+
print("Existing FAISS results:", results[0].page_content)
|
| 201 |
+
|
| 202 |
+
if __name__ == "__main__":
|
| 203 |
+
main()
|
tests/vector_store_handler/test_vectorstores.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import unittest
|
| 2 |
+
from unittest.mock import MagicMock, patch
|
| 3 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 4 |
+
from langchain.schema import Document
|
| 5 |
+
|
| 6 |
+
# Update the import to reflect your project structure
|
| 7 |
+
from rag_app.vector_store_handler.vectorstores import BaseVectorStore, ChromaVectorStore, FAISSVectorStore
|
| 8 |
+
|
| 9 |
+
class TestBaseVectorStore(unittest.TestCase):
|
| 10 |
+
def setUp(self):
|
| 11 |
+
self.embedding_model = MagicMock(spec=OpenAIEmbeddings)
|
| 12 |
+
self.base_store = BaseVectorStore(self.embedding_model, "test_dir")
|
| 13 |
+
|
| 14 |
+
def test_init(self):
|
| 15 |
+
self.assertEqual(self.base_store.persist_directory, "test_dir")
|
| 16 |
+
self.assertEqual(self.base_store.embeddings, self.embedding_model)
|
| 17 |
+
self.assertIsNone(self.base_store.vectorstore)
|
| 18 |
+
|
| 19 |
+
@patch('rag_app.vector_store_handler.vectorstores.TextLoader')
|
| 20 |
+
@patch('rag_app.vector_store_handler.vectorstores.CharacterTextSplitter')
|
| 21 |
+
def test_load_and_process_documents(self, mock_splitter, mock_loader):
|
| 22 |
+
mock_loader.return_value.load.return_value = ["doc1", "doc2"]
|
| 23 |
+
mock_splitter.return_value.split_documents.return_value = ["split1", "split2"]
|
| 24 |
+
|
| 25 |
+
result = self.base_store.load_and_process_documents("test.txt")
|
| 26 |
+
|
| 27 |
+
mock_loader.assert_called_once_with("test.txt")
|
| 28 |
+
mock_splitter.assert_called_once_with(chunk_size=1000, chunk_overlap=0)
|
| 29 |
+
self.assertEqual(result, ["split1", "split2"])
|
| 30 |
+
|
| 31 |
+
def test_similarity_search_not_initialized(self):
|
| 32 |
+
with self.assertRaises(ValueError):
|
| 33 |
+
self.base_store.similarity_search("query")
|
| 34 |
+
|
| 35 |
+
class TestChromaVectorStore(unittest.TestCase):
|
| 36 |
+
def setUp(self):
|
| 37 |
+
self.embedding_model = MagicMock(spec=OpenAIEmbeddings)
|
| 38 |
+
self.chroma_store = ChromaVectorStore(self.embedding_model, "test_dir")
|
| 39 |
+
|
| 40 |
+
@patch('rag_app.vector_store_handler.vectorstores.Chroma')
|
| 41 |
+
def test_create_vectorstore(self, mock_chroma):
|
| 42 |
+
texts = [Document(page_content="test")]
|
| 43 |
+
self.chroma_store.create_vectorstore(texts)
|
| 44 |
+
mock_chroma.from_documents.assert_called_once_with(
|
| 45 |
+
texts,
|
| 46 |
+
self.embedding_model,
|
| 47 |
+
persist_directory="test_dir"
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
@patch('rag_app.vector_store_handler.vectorstores.Chroma')
|
| 51 |
+
def test_load_existing_vectorstore(self, mock_chroma):
|
| 52 |
+
self.chroma_store.load_existing_vectorstore()
|
| 53 |
+
mock_chroma.assert_called_once_with(
|
| 54 |
+
persist_directory="test_dir",
|
| 55 |
+
embedding_function=self.embedding_model
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
def test_save(self):
|
| 59 |
+
self.chroma_store.vectorstore = MagicMock()
|
| 60 |
+
self.chroma_store.save()
|
| 61 |
+
self.chroma_store.vectorstore.persist.assert_called_once()
|
| 62 |
+
|
| 63 |
+
class TestFAISSVectorStore(unittest.TestCase):
|
| 64 |
+
def setUp(self):
|
| 65 |
+
self.embedding_model = MagicMock(spec=OpenAIEmbeddings)
|
| 66 |
+
self.faiss_store = FAISSVectorStore(self.embedding_model, "test_dir")
|
| 67 |
+
|
| 68 |
+
@patch('rag_app.vector_store_handler.vectorstores.FAISS')
|
| 69 |
+
def test_create_vectorstore(self, mock_faiss):
|
| 70 |
+
texts = [Document(page_content="test")]
|
| 71 |
+
self.faiss_store.create_vectorstore(texts)
|
| 72 |
+
mock_faiss.from_documents.assert_called_once_with(texts, self.embedding_model)
|
| 73 |
+
|
| 74 |
+
@patch('rag_app.vector_store_handler.vectorstores.FAISS')
|
| 75 |
+
def test_load_existing_vectorstore(self, mock_faiss):
|
| 76 |
+
self.faiss_store.load_existing_vectorstore()
|
| 77 |
+
mock_faiss.load_local.assert_called_once_with("test_dir", self.embedding_model)
|
| 78 |
+
|
| 79 |
+
@patch('rag_app.vector_store_handler.vectorstores.FAISS')
|
| 80 |
+
def test_save(self, mock_faiss):
|
| 81 |
+
self.faiss_store.vectorstore = MagicMock()
|
| 82 |
+
self.faiss_store.save()
|
| 83 |
+
self.faiss_store.vectorstore.save_local.assert_called_once_with("test_dir")
|
| 84 |
+
|
| 85 |
+
if __name__ == '__main__':
|
| 86 |
+
unittest.main()
|