insurance_advisor_wb / rag-system-anatomy /build_vector_store.py
Asaad Almutareb
initial advanced rag chain
f66560f
raw
history blame
1.5 kB
# vectorization functions
from langchain.vectorstores import FAISS
from langchain.document_loaders import ReadTheDocsLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from create_embedding import create_embeddings
import time
def build_vector_store(
docs: list,
db_path: str,
embedding_model: str,
new_db:bool=False,
chunk_size:int=500,
chunk_overlap:int=50,
):
"""
"""
if db_path is None:
FAISS_INDEX_PATH = "./vectorstore/py-faiss-multi-mpnet-500"
else:
FAISS_INDEX_PATH = db_path
embeddings,chunks = create_embeddings(docs, embedding_model, chunk_size, chunk_overlap)
#load chunks into vector store
print(f'Loading chunks into faiss vector store ...')
st = time.time()
if new_db:
db_faiss = FAISS.from_documents(chunks, embeddings)
else:
db_faiss = FAISS.add_documents(chunks, embeddings)
db_faiss.save_local(FAISS_INDEX_PATH)
et = time.time() - st
print(f'Time taken: {et} seconds.')
#print(f'Loading chunks into chroma vector store ...')
#st = time.time()
#persist_directory='./vectorstore/py-chroma-multi-mpnet-500'
#db_chroma = Chroma.from_documents(chunks, embeddings, persist_directory=persist_directory)
#et = time.time() - st
#print(f'Time taken: {et} seconds.')
result = f"built vectore store at {FAISS_INDEX_PATH}"
return result