Spaces:
Sleeping
Sleeping
# retriever and qa_chain function | |
# HF libraries | |
from langchain.llms import HuggingFaceHub | |
from langchain_huggingface import HuggingFaceHubEmbeddings | |
# vectorestore | |
from langchain_community.vectorstores import FAISS | |
# retrieval chain | |
from langchain.chains import RetrievalQA | |
# prompt template | |
from langchain.prompts import PromptTemplate | |
from langchain.memory import ConversationBufferMemory | |
from config import EMBEDDING_MODEL | |
def get_db_retriever(vector_db:str=None): | |
embeddings = HuggingFaceHubEmbeddings(repo_id=EMBEDDING_MODEL) | |
if not vector_db: | |
FAISS_INDEX_PATH='./vectorstore/py-faiss-multi-mpnet-500' | |
else: | |
FAISS_INDEX_PATH=vector_db | |
db = FAISS.load_local(FAISS_INDEX_PATH, embeddings) | |
retriever = db.as_retriever() | |
return retriever | |