Spaces:
Sleeping
Sleeping
File size: 7,247 Bytes
f5d22a4 aab5640 e3a5dff aab5640 6f2843a f5d22a4 fdb6484 aab5640 f5d22a4 aab5640 f5d22a4 aab5640 e3a5dff aab5640 fdb6484 aab5640 3b24cdb f5d22a4 3b24cdb e3a5dff aab5640 fdb6484 aab5640 3b24cdb e3a5dff aab5640 f5d22a4 aab5640 e3a5dff f5d22a4 e3a5dff aab5640 f5d22a4 e3a5dff aab5640 f5d22a4 aab5640 e3a5dff f5d22a4 aab5640 e3a5dff f5d22a4 3b24cdb f5d22a4 e3a5dff aab5640 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# Import Gradio for UI, along with other necessary libraries
import gradio as gr
from fastapi import FastAPI
from fastapi import FastAPI
from rag_app.agents.react_agent import agent_executor, llm
from rag_app.chains import user_response_sentiment_prompt
from typing import Dict
import re
from rag_app.utils.utils import extract_responses
from rag_app.loading_data.load_S3_vector_stores import get_chroma_vs
from rag_app.agents.react_agent import agent_executor
# need to import the qa!
app = FastAPI()
get_chroma_vs()
if __name__ == "__main__":
# Function to add a new input to the chat history
def add_text(history, text):
# Append the new text to the history with a placeholder for the response
history = history + [(text, None)]
return history, ""
# Function to add a new input to the chat history
def add_text(history, text):
# Append the new text to the history with a placeholder for the response
history = history + [(text, None)]
return history, ""
# Function representing the bot's response mechanism
def bot(history):
# Obtain the response from the 'infer' function using the latest input
response = infer(history[-1][0], history)
#sources = [doc.metadata.get("source") for doc in response['source_documents']]
#src_list = '\n'.join(sources)
#print_this = response['result'] + "\n\n\n Sources: \n\n\n" + src_list
#history[-1][1] = print_this #response['answer']
# Update the history with the bot's response
history[-1][1] = response['output']
return history
# Function representing the bot's response mechanism
def bot(history):
# Obtain the response from the 'infer' function using the latest input
response = infer(history[-1][0], history)
history[-1][1] = response['output']
return history
# Function to infer the response using the RAG model
def infer(question, history):
# Use the question and history to query the RAG model
#result = qa({"query": question, "history": history, "question": question})
try:
result = agent_executor.invoke(
{
"input": question,
"chat_history": history
}
)
return result
except Exception:
raise gr.Error("Model is Overloaded, Please retry later!")
def vote(data: gr.LikeData):
if data.liked:
print("You upvoted this response: " + data.value)
else:
print("You downvoted this response: " + data.value)
# Function to infer the response using the RAG model
def infer(question, history):
# Use the question and history to query the RAG model
#result = qa({"query": question, "history": history, "question": question})
# try:
# data = user_sentiment_chain.invoke({"user_reponse":question})
# responses = extract_responses(data)
# if responses['AI'] == "1":
# pass
# # Do important stuff here plox
# # store into database
# except Exception as e:
# raise e
try:
result = agent_executor.invoke(
{
"input": question,
"chat_history": history
}
)
return result
except Exception as e:
# raise gr.Error("Model is Overloaded, Please retry later!")
raise e
def vote(data: gr.LikeData):
if data.liked:
print("You upvoted this response: ")
else:
print("You downvoted this response: ")
# CSS styling for the Gradio interface
css = """
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
# CSS styling for the Gradio interface
css = """
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
# HTML content for the Gradio interface title
title = """
<div style="text-align:left;">
<p>Hello, I BotTina 2.0, your intelligent AI assistant. I can help you explore Wuerttembergische Versicherungs products.<br />
</div>
"""
# HTML content for the Gradio interface title
title = """
<div style="text-align:left;">
<p>Hello, I BotTina 2.0, your intelligent AI assistant. I can help you explore Wuerttembergische Versicherungs products.<br />
</div>
"""
# Building the Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title) # Add the HTML title to the interface
chatbot = gr.Chatbot([], elem_id="chatbot",
label="BotTina 2.0",
bubble_full_width=False,
avatar_images=(None, "https://dacodi-production.s3.amazonaws.com/store/87bc00b6727589462954f2e3ff6f531c.png"),
height=680,) # Initialize the chatbot component
chatbot.like(vote, None, None)
clear = gr.Button("Clear") # Add a button to clear the chat
# Building the Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title) # Add the HTML title to the interface
chatbot = gr.Chatbot([], elem_id="chatbot",
label="BotTina 2.0",
bubble_full_width=False,
avatar_images=(None, "https://dacodi-production.s3.amazonaws.com/store/87bc00b6727589462954f2e3ff6f531c.png"),
height=680,) # Initialize the chatbot component
chatbot.like(vote, None, None)
clear = gr.Button("Clear") # Add a button to clear the chat
# Create a row for the question input
with gr.Row():
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
# Create a row for the question input
with gr.Row():
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
# Define the action when the question is submitted
question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then(
bot, chatbot, chatbot
)
# Define the action for the clear button
clear.click(lambda: None, None, chatbot, queue=False)
# Define the action when the question is submitted
question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then(
bot, chatbot, chatbot
)
# Define the action for the clear button
clear.click(lambda: None, None, chatbot, queue=False)
# Launch the Gradio demo interface
demo.queue().launch(share=False, debug=True)
app = gr.mount_gradio_app(app, demo, path="/")
# Launch the Gradio demo interface
demo.queue().launch(share=False, debug=True) |