File size: 8,880 Bytes
f1268bf
8e29230
83d98e9
5ffaf21
 
 
 
 
 
 
 
 
 
3a85771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ffaf21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1268bf
 
 
 
8e29230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83d98e9
8e29230
 
 
 
 
 
 
 
3a85771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from langchain_core.documents import Document
from chains import generate_document_summary_prompt
from config import SEVEN_B_LLM_MODEL
# embeddings functions
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.embeddings.sentence_transformer import (
    SentenceTransformerEmbeddings,
)
import time
from langchain_core.documents import Document
from config import EMBEDDING_MODEL
from langchain.retrievers import VectorStoreRetriever
from langchain_core.vectorstores import VectorStoreRetriever
# vectorization functions
from langchain_community.vectorstores import FAISS
from langchain_community.vectorstores import Chroma
from langchain_community.retrievers import BM25Retriever

from rag_app.knowledge_base.utils import create_embeddings
from rag_app.utils.generate_summary import generate_description, generate_keywords

import time
import os

from config import FAISS_INDEX_PATH

from pathlib import Path
from langchain_community.vectorstores import FAISS
from dotenv import load_dotenv
import os
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
import requests
from langchain_community.vectorstores import Chroma



def create_embeddings(
        docs: list[Document], 
        chunk_size:int = 500, 
        chunk_overlap:int = 50,
        ):
    """given a sequence of `Document` objects this fucntion will
    generate embeddings for it.
    
    ## argument
    :params docs (list[Document]) -> list of `list[Document]`
    :params chunk_size (int) -> chunk size in which documents are chunks, defaults to 500
    :params chunk_overlap (int) -> the amount of token that will be overlapped between chunks, defaults to 50
    :params embedding_model (str) -> the huggingspace model that will embed the documents 
    ## Return
    Tuple of embedding and chunks
    """
    
    
    text_splitter = RecursiveCharacterTextSplitter(
        separators=["\n\n", "\n", "(?<=\. )", " ", ""],
        chunk_size = chunk_size,
        chunk_overlap  = chunk_overlap,
        length_function = len,
    )

    # Stage one: read all the docs, split them into chunks.
    st = time.time()
    print('Loading documents and creating chunks ...')

    # Split each document into chunks using the configured text splitter
    chunks = text_splitter.create_documents([doc.page_content for doc in docs], metadatas=[doc.metadata for doc in docs])
    et = time.time() - st
    print(f'Time taken to chunk {len(docs)} documents: {et} seconds.')

    #Stage two: embed the docs.
    embeddings = SentenceTransformerEmbeddings(model_name=EMBEDDING_MODEL)
    print(f"created a total of {len(chunks)} chunks")

    return embeddings,chunks


def generate_document_summaries(
        docs: list[Document]
    ) -> list[Document]:
    """
    Generates summaries for a list of Document objects and updates their metadata with the summaries.

    Args:
        docs (List[Document]): A list of Document objects to generate summaries for.

    Returns:
        List[Document]: A new list of Document objects with updated metadata containing the summaries.

    Example:
        docs = [Document(metadata={"title": "Doc1"}), Document(metadata={"title": "Doc2"})]
        updated_docs = generate_document_summaries(docs)
        for doc in updated_docs:
            print(doc.metadata["summary"])

    """
    
    new_docs = docs.copy()
    
    for doc in new_docs:
        
        genrate_summary_chain = generate_document_summary_prompt | SEVEN_B_LLM_MODEL
        summary = genrate_summary_chain.invoke(
            {"document":str(doc.metadata)}
        )        
        
        doc.metadata.update(
            {"summary":summary}
        )
    
    return new_docs


def build_vector_store(
        docs: list, 
        embedding_model: str, 
        new_db:bool=False, 
        chunk_size:int=500, 
        chunk_overlap:int=50,
        ):
    """

    """

    embeddings,chunks = create_embeddings(
        docs, 
        chunk_size, 
        chunk_overlap, 
        embedding_model
        )

    #load chunks into vector store
    print(f'Loading chunks into faiss vector store ...')
    
    st = time.time()
    if new_db:
        db_faiss = FAISS.from_documents(chunks, embeddings)
        bm25_retriever = BM25Retriever.from_documents(chunks)
    else:
        db_faiss = FAISS.add_documents(chunks, embeddings)
        bm25_retriever = BM25Retriever.add_documents(chunks)
        
    db_faiss.save_local(FAISS_INDEX_PATH)
    et = time.time() - st
    print(f'Time taken: {et} seconds.')

    print(f'Loading chunks into chroma vector store ...')
    
    st = time.time()
    persist_directory='./vectorstore/chroma-insurance-agent-1500'
    db_chroma = Chroma.from_documents(chunks, embeddings, persist_directory=persist_directory)
    et = time.time() - st
    
    print(f'Time taken: {et} seconds.')
    result = f"built vectore store at {FAISS_INDEX_PATH}"
    return result

def get_reranked_docs_faiss(
    query:str, 
    path_to_db:str, 
    embedding_model:str,
    hf_api_key:str, 
    num_docs:int=5
    ) -> list:
    """ Re-ranks the similarity search results and returns top-k highest ranked docs

    Args:
        query (str): The search query
        path_to_db (str): Path to the vectorstore database
        embedding_model (str): Embedding model used in the vector store
        num_docs (int): Number of documents to return
    
    Returns: A list of documents with the highest rank
    """
    assert num_docs <= 10, "num_docs should be less than similarity search results"
    
    embeddings = HuggingFaceInferenceAPIEmbeddings(
        api_key=hf_api_key,
        model_name=embedding_model
        )
    
    # Load the vectorstore database
    db = FAISS.load_local(
        folder_path=path_to_db,
        embeddings=embeddings,
        allow_dangerous_deserialization=True
        )
    
    # Get 10 documents based on similarity search
    docs =  db.similarity_search(query=query, k=10)

    # Add the page_content, description and title together
    passages = [doc.page_content + "\n" + doc.metadata.get('title', "") +"\n"+ doc.metadata.get('description', "") 
                for doc in docs]
    
    # Prepare the payload
    inputs = [{"text": query, "text_pair": passage} for passage in passages]

    API_URL = "https://api-inference.huggingface.co/models/deepset/gbert-base-germandpr-reranking"
    headers = {"Authorization": f"Bearer {hf_api_key}"}

    response = requests.post(API_URL, headers=headers, json=inputs)
    scores = response.json()
    
    try:
        relevance_scores = [item[1]['score'] for item in scores]
    except ValueError as e:
        print('Could not get the relevance_scores -> something might be wrong with the json output')
        return 
    
    if relevance_scores:
        ranked_results = sorted(zip(docs, passages, relevance_scores), key=lambda x: x[2], reverse=True)
        top_k_results = ranked_results[:num_docs]
        return [doc for doc, _, _ in top_k_results]
    
    
def get_reranked_docs_chroma(query:str, 
                      path_to_db:str, 
                      embedding_model:str,
                      hf_api_key:str,
                      reranking_hf_url:str = "https://api-inference.huggingface.co/models/sentence-transformers/all-mpnet-base-v2", 
                      num_docs:int=5) -> list:
    """ Re-ranks the similarity search results and returns top-k highest ranked docs

        Args:
            query (str): The search query
            path_to_db (str): Path to the vectorstore database
            embedding_model (str): Embedding model used in the vector store
            num_docs (int): Number of documents to return
        
        Returns: A list of documents with the highest rank
    """
    embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=hf_api_key,
                                                   model_name=embedding_model)
    # Load the vectorstore database
    db = Chroma(persist_directory=path_to_db, embedding_function=embeddings)
    
    # Get k documents based on similarity search
    sim_docs =  db.similarity_search(query=query, k=10)

    passages = [doc.page_content for doc in sim_docs]
    
    # Prepare the payload
    payload = {"inputs": 
               {"source_sentence": query,
	            "sentences": passages}}
    
    headers = {"Authorization": f"Bearer {hf_api_key}"}

    response = requests.post(url=reranking_hf_url, headers=headers, json=payload)
    print(f'{response = }')
    if response.status_code != 200:
        print('Something went wrong with the response')
        return
    
    similarity_scores = response.json()
    ranked_results = sorted(zip(sim_docs, passages, similarity_scores), key=lambda x: x[2], reverse=True)
    top_k_results = ranked_results[:num_docs]
    return [doc for doc, _, _ in top_k_results]