Spaces:
Sleeping
Sleeping
File size: 8,880 Bytes
f1268bf 8e29230 83d98e9 5ffaf21 3a85771 5ffaf21 f1268bf 8e29230 83d98e9 8e29230 3a85771 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
from langchain_core.documents import Document
from chains import generate_document_summary_prompt
from config import SEVEN_B_LLM_MODEL
# embeddings functions
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.embeddings.sentence_transformer import (
SentenceTransformerEmbeddings,
)
import time
from langchain_core.documents import Document
from config import EMBEDDING_MODEL
from langchain.retrievers import VectorStoreRetriever
from langchain_core.vectorstores import VectorStoreRetriever
# vectorization functions
from langchain_community.vectorstores import FAISS
from langchain_community.vectorstores import Chroma
from langchain_community.retrievers import BM25Retriever
from rag_app.knowledge_base.utils import create_embeddings
from rag_app.utils.generate_summary import generate_description, generate_keywords
import time
import os
from config import FAISS_INDEX_PATH
from pathlib import Path
from langchain_community.vectorstores import FAISS
from dotenv import load_dotenv
import os
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
import requests
from langchain_community.vectorstores import Chroma
def create_embeddings(
docs: list[Document],
chunk_size:int = 500,
chunk_overlap:int = 50,
):
"""given a sequence of `Document` objects this fucntion will
generate embeddings for it.
## argument
:params docs (list[Document]) -> list of `list[Document]`
:params chunk_size (int) -> chunk size in which documents are chunks, defaults to 500
:params chunk_overlap (int) -> the amount of token that will be overlapped between chunks, defaults to 50
:params embedding_model (str) -> the huggingspace model that will embed the documents
## Return
Tuple of embedding and chunks
"""
text_splitter = RecursiveCharacterTextSplitter(
separators=["\n\n", "\n", "(?<=\. )", " ", ""],
chunk_size = chunk_size,
chunk_overlap = chunk_overlap,
length_function = len,
)
# Stage one: read all the docs, split them into chunks.
st = time.time()
print('Loading documents and creating chunks ...')
# Split each document into chunks using the configured text splitter
chunks = text_splitter.create_documents([doc.page_content for doc in docs], metadatas=[doc.metadata for doc in docs])
et = time.time() - st
print(f'Time taken to chunk {len(docs)} documents: {et} seconds.')
#Stage two: embed the docs.
embeddings = SentenceTransformerEmbeddings(model_name=EMBEDDING_MODEL)
print(f"created a total of {len(chunks)} chunks")
return embeddings,chunks
def generate_document_summaries(
docs: list[Document]
) -> list[Document]:
"""
Generates summaries for a list of Document objects and updates their metadata with the summaries.
Args:
docs (List[Document]): A list of Document objects to generate summaries for.
Returns:
List[Document]: A new list of Document objects with updated metadata containing the summaries.
Example:
docs = [Document(metadata={"title": "Doc1"}), Document(metadata={"title": "Doc2"})]
updated_docs = generate_document_summaries(docs)
for doc in updated_docs:
print(doc.metadata["summary"])
"""
new_docs = docs.copy()
for doc in new_docs:
genrate_summary_chain = generate_document_summary_prompt | SEVEN_B_LLM_MODEL
summary = genrate_summary_chain.invoke(
{"document":str(doc.metadata)}
)
doc.metadata.update(
{"summary":summary}
)
return new_docs
def build_vector_store(
docs: list,
embedding_model: str,
new_db:bool=False,
chunk_size:int=500,
chunk_overlap:int=50,
):
"""
"""
embeddings,chunks = create_embeddings(
docs,
chunk_size,
chunk_overlap,
embedding_model
)
#load chunks into vector store
print(f'Loading chunks into faiss vector store ...')
st = time.time()
if new_db:
db_faiss = FAISS.from_documents(chunks, embeddings)
bm25_retriever = BM25Retriever.from_documents(chunks)
else:
db_faiss = FAISS.add_documents(chunks, embeddings)
bm25_retriever = BM25Retriever.add_documents(chunks)
db_faiss.save_local(FAISS_INDEX_PATH)
et = time.time() - st
print(f'Time taken: {et} seconds.')
print(f'Loading chunks into chroma vector store ...')
st = time.time()
persist_directory='./vectorstore/chroma-insurance-agent-1500'
db_chroma = Chroma.from_documents(chunks, embeddings, persist_directory=persist_directory)
et = time.time() - st
print(f'Time taken: {et} seconds.')
result = f"built vectore store at {FAISS_INDEX_PATH}"
return result
def get_reranked_docs_faiss(
query:str,
path_to_db:str,
embedding_model:str,
hf_api_key:str,
num_docs:int=5
) -> list:
""" Re-ranks the similarity search results and returns top-k highest ranked docs
Args:
query (str): The search query
path_to_db (str): Path to the vectorstore database
embedding_model (str): Embedding model used in the vector store
num_docs (int): Number of documents to return
Returns: A list of documents with the highest rank
"""
assert num_docs <= 10, "num_docs should be less than similarity search results"
embeddings = HuggingFaceInferenceAPIEmbeddings(
api_key=hf_api_key,
model_name=embedding_model
)
# Load the vectorstore database
db = FAISS.load_local(
folder_path=path_to_db,
embeddings=embeddings,
allow_dangerous_deserialization=True
)
# Get 10 documents based on similarity search
docs = db.similarity_search(query=query, k=10)
# Add the page_content, description and title together
passages = [doc.page_content + "\n" + doc.metadata.get('title', "") +"\n"+ doc.metadata.get('description', "")
for doc in docs]
# Prepare the payload
inputs = [{"text": query, "text_pair": passage} for passage in passages]
API_URL = "https://api-inference.huggingface.co/models/deepset/gbert-base-germandpr-reranking"
headers = {"Authorization": f"Bearer {hf_api_key}"}
response = requests.post(API_URL, headers=headers, json=inputs)
scores = response.json()
try:
relevance_scores = [item[1]['score'] for item in scores]
except ValueError as e:
print('Could not get the relevance_scores -> something might be wrong with the json output')
return
if relevance_scores:
ranked_results = sorted(zip(docs, passages, relevance_scores), key=lambda x: x[2], reverse=True)
top_k_results = ranked_results[:num_docs]
return [doc for doc, _, _ in top_k_results]
def get_reranked_docs_chroma(query:str,
path_to_db:str,
embedding_model:str,
hf_api_key:str,
reranking_hf_url:str = "https://api-inference.huggingface.co/models/sentence-transformers/all-mpnet-base-v2",
num_docs:int=5) -> list:
""" Re-ranks the similarity search results and returns top-k highest ranked docs
Args:
query (str): The search query
path_to_db (str): Path to the vectorstore database
embedding_model (str): Embedding model used in the vector store
num_docs (int): Number of documents to return
Returns: A list of documents with the highest rank
"""
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=hf_api_key,
model_name=embedding_model)
# Load the vectorstore database
db = Chroma(persist_directory=path_to_db, embedding_function=embeddings)
# Get k documents based on similarity search
sim_docs = db.similarity_search(query=query, k=10)
passages = [doc.page_content for doc in sim_docs]
# Prepare the payload
payload = {"inputs":
{"source_sentence": query,
"sentences": passages}}
headers = {"Authorization": f"Bearer {hf_api_key}"}
response = requests.post(url=reranking_hf_url, headers=headers, json=payload)
print(f'{response = }')
if response.status_code != 200:
print('Something went wrong with the response')
return
similarity_scores = response.json()
ranked_results = sorted(zip(sim_docs, passages, similarity_scores), key=lambda x: x[2], reverse=True)
top_k_results = ranked_results[:num_docs]
return [doc for doc, _, _ in top_k_results] |