Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load model and tokenizer
|
5 |
+
@st.cache_resource
|
6 |
+
def load_model_and_tokenizer():
|
7 |
+
model_name = "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ"
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
model_name,
|
10 |
+
device_map="auto",
|
11 |
+
trust_remote_code=False,
|
12 |
+
revision="main"
|
13 |
+
)
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
15 |
+
return model, tokenizer
|
16 |
+
|
17 |
+
model, tokenizer = load_model_and_tokenizer()
|
18 |
+
|
19 |
+
# Define the prompt template
|
20 |
+
def generate_prompt(comment):
|
21 |
+
instructions = f"""Virtual Psychologist, communicates with empathy and understanding, focusing on mental health support and providing advice within its expertise. \
|
22 |
+
It actively listens, acknowledges emotions, and avoids overly clinical or technical language unless specifically requested. \
|
23 |
+
It reacts to feedback with warmth and adjusts its tone to match the individual's needs, offering encouragement and validation as appropriate. \
|
24 |
+
Responses are tailored in length and tone to ensure a supportive and conversational experience.
|
25 |
+
"""
|
26 |
+
return f"[INST] {instructions} \n{comment} \n[/INST]"
|
27 |
+
|
28 |
+
# Define the response generator
|
29 |
+
def get_response(comment):
|
30 |
+
prompt = generate_prompt(comment)
|
31 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
32 |
+
outputs = model.generate(
|
33 |
+
input_ids=inputs["input_ids"].to("cuda"),
|
34 |
+
attention_mask=inputs["attention_mask"].to("cuda"),
|
35 |
+
max_new_tokens=140,
|
36 |
+
pad_token_id=tokenizer.eos_token_id
|
37 |
+
)
|
38 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
+
return response.split("[/INST]")[-1].strip()
|
40 |
+
|
41 |
+
# Streamlit app layout
|
42 |
+
st.title("Virtual Psychologist")
|
43 |
+
st.markdown("This virtual psychologist offers empathetic responses to your comments or questions. Enter your message below.")
|
44 |
+
|
45 |
+
user_input = st.text_input("Your Comment/Question:", placeholder="Type here...")
|
46 |
+
|
47 |
+
if user_input:
|
48 |
+
with st.spinner("Generating response..."):
|
49 |
+
response = get_response(user_input)
|
50 |
+
st.write("### Response:")
|
51 |
+
st.write(response)
|
52 |
+
|
53 |
+
st.markdown("Built with ❤️ using [Hugging Face Transformers](https://huggingface.co/transformers/) and [Streamlit](https://streamlit.io/).")
|