# import streamlit as st # from transformers import AutoModelForCausalLM, AutoTokenizer # # Load the model and tokenizer # @st.cache_resource # def load_model_and_tokenizer(): # model_name = "microsoft/DialoGPT-medium" # Replace with your chosen model # tokenizer = AutoTokenizer.from_pretrained(model_name) # model = AutoModelForCausalLM.from_pretrained(model_name) # return tokenizer, model # tokenizer, model = load_model_and_tokenizer() # # Streamlit App # st.title("General Chatbot") # st.write("A chatbot powered by an open-source model from Hugging Face.") # # Initialize the conversation # if "conversation_history" not in st.session_state: # st.session_state["conversation_history"] = [] # # Input box for user query # user_input = st.text_input("You:", placeholder="Ask me anything...", key="user_input") # if st.button("Send") and user_input: # # Append user input to history # st.session_state["conversation_history"].append({"role": "user", "content": user_input}) # # Tokenize and generate response # input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt") # chat_history_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True) # # Append model response to history # st.session_state["conversation_history"].append({"role": "assistant", "content": response}) # # Display the conversation # for message in st.session_state["conversation_history"]: # if message["role"] == "user": # st.write(f"**You:** {message['content']}") # else: # st.write(f"**Bot:** {message['content']}") import streamlit as st from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM st.title("🤖 Smart Chatbot") @st.cache_resource def load_model(): model_name = "facebook/blenderbot-3B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) return pipeline("text2text-generation", model=model, tokenizer=tokenizer) chatbot = load_model() if "conversation" not in st.session_state: st.session_state.conversation = [] # Display chat history for msg in st.session_state.conversation: with st.chat_message(msg["role"]): st.markdown(msg["content"]) if prompt := st.chat_input("Ask me anything"): # Add user message st.session_state.conversation.append({"role": "user", "content": prompt}) # Format context context = "\n".join([f"{msg['role']}: {msg['content']}" for msg in st.session_state.conversation[-3:]]) try: with st.spinner("Thinking..."): response = chatbot( context, max_length=200, temperature=0.9, top_k=60, top_p=0.9, num_beams=5, no_repeat_ngram_size=3 )[0]['generated_text'] # Clean response response = response.split("assistant:")[-1].strip() # Ensure meaningful response if not response or response.lower() in ["i don't know", "i'm not sure"]: response = "I need to learn more about that. Could you clarify?" except Exception as e: response = "Let me check my knowledge sources and get back to you on that." st.session_state.conversation.append({"role": "assistant", "content": response}) st.rerun()