import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer @st.cache_resource def load_model_and_tokenizer(): model_name = "microsoft/DialoGPT-medium" # Replace with your chosen model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) return tokenizer, model tokenizer, model = load_model_and_tokenizer() # Streamlit App st.title("General Chatbot") st.write("A chatbot powered by an open-source model from Hugging Face.") # Initialize the conversation if "conversation_history" not in st.session_state: st.session_state["conversation_history"] = [] # Input box for user query user_input = st.text_input("You:", placeholder="Ask me anything...", key="user_input") if st.button("Send") and user_input: # Append user input to history st.session_state["conversation_history"].append({"role": "user", "content": user_input}) # Tokenize and generate response input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt") chat_history_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True) # Append model response to history st.session_state["conversation_history"].append({"role": "assistant", "content": response}) # Display the conversation for message in st.session_state["conversation_history"]: if message["role"] == "user": st.write(f"**You:** {message['content']}") else: st.write(f"**Bot:** {message['content']}")