Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,3 @@
|
|
1 |
-
# import streamlit as st
|
2 |
-
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
|
4 |
-
# # Load the model and tokenizer
|
5 |
-
# @st.cache_resource
|
6 |
-
# def load_model_and_tokenizer():
|
7 |
-
# model_name = "microsoft/DialoGPT-medium" # Replace with your chosen model
|
8 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
-
# model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
-
# return tokenizer, model
|
11 |
-
|
12 |
-
# tokenizer, model = load_model_and_tokenizer()
|
13 |
-
|
14 |
-
# # Streamlit App
|
15 |
-
# st.title("General Chatbot")
|
16 |
-
# st.write("A chatbot powered by an open-source model from Hugging Face.")
|
17 |
-
|
18 |
-
# # Initialize the conversation
|
19 |
-
# if "conversation_history" not in st.session_state:
|
20 |
-
# st.session_state["conversation_history"] = []
|
21 |
-
|
22 |
-
# # Input box for user query
|
23 |
-
# user_input = st.text_input("You:", placeholder="Ask me anything...", key="user_input")
|
24 |
-
|
25 |
-
# if st.button("Send") and user_input:
|
26 |
-
# # Append user input to history
|
27 |
-
# st.session_state["conversation_history"].append({"role": "user", "content": user_input})
|
28 |
-
|
29 |
-
# # Tokenize and generate response
|
30 |
-
# input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
|
31 |
-
# chat_history_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
32 |
-
# response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
33 |
-
|
34 |
-
# # Append model response to history
|
35 |
-
# st.session_state["conversation_history"].append({"role": "assistant", "content": response})
|
36 |
-
|
37 |
-
# # Display the conversation
|
38 |
-
# for message in st.session_state["conversation_history"]:
|
39 |
-
# if message["role"] == "user":
|
40 |
-
# st.write(f"**You:** {message['content']}")
|
41 |
-
# else:
|
42 |
-
# st.write(f"**Bot:** {message['content']}")
|
43 |
-
|
44 |
import streamlit as st
|
45 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
46 |
|
@@ -58,7 +15,7 @@ tokenizer, model = load_model_and_tokenizer()
|
|
58 |
st.title("General Chatbot")
|
59 |
st.write("A chatbot powered by an open-source model from Hugging Face.")
|
60 |
|
61 |
-
# Initialize the conversation
|
62 |
if "conversation_history" not in st.session_state:
|
63 |
st.session_state["conversation_history"] = []
|
64 |
|
@@ -68,30 +25,13 @@ user_input = st.text_input("You:", placeholder="Ask me anything...", key="user_i
|
|
68 |
if st.button("Send") and user_input:
|
69 |
# Append user input to history
|
70 |
st.session_state["conversation_history"].append({"role": "user", "content": user_input})
|
71 |
-
|
72 |
-
#
|
73 |
-
|
74 |
-
|
75 |
-
if message["role"] == "user":
|
76 |
-
conversation_context += f"User: {message['content']}\n"
|
77 |
-
elif message["role"] == "assistant":
|
78 |
-
conversation_context += f"Bot: {message['content']}\n"
|
79 |
-
|
80 |
-
input_ids = tokenizer.encode(conversation_context + "Bot:", return_tensors="pt")
|
81 |
-
|
82 |
-
# Generate the response with adjusted parameters
|
83 |
-
chat_history_ids = model.generate(
|
84 |
-
input_ids,
|
85 |
-
max_length=500, # Increase maximum length for longer responses
|
86 |
-
num_return_sequences=1,
|
87 |
-
temperature=0.2, # Adjust for creativity (lower is more focused, higher is more diverse)
|
88 |
-
top_p=0.5, # Use nucleus sampling for diversity
|
89 |
-
top_k=50, # Limit to top-k tokens for more controlled output
|
90 |
-
pad_token_id=tokenizer.eos_token_id
|
91 |
-
)
|
92 |
-
|
93 |
-
# Decode the response and add it to history
|
94 |
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
|
|
|
|
95 |
st.session_state["conversation_history"].append({"role": "assistant", "content": response})
|
96 |
|
97 |
# Display the conversation
|
@@ -100,3 +40,4 @@ for message in st.session_state["conversation_history"]:
|
|
100 |
st.write(f"**You:** {message['content']}")
|
101 |
else:
|
102 |
st.write(f"**Bot:** {message['content']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
|
|
15 |
st.title("General Chatbot")
|
16 |
st.write("A chatbot powered by an open-source model from Hugging Face.")
|
17 |
|
18 |
+
# Initialize the conversation
|
19 |
if "conversation_history" not in st.session_state:
|
20 |
st.session_state["conversation_history"] = []
|
21 |
|
|
|
25 |
if st.button("Send") and user_input:
|
26 |
# Append user input to history
|
27 |
st.session_state["conversation_history"].append({"role": "user", "content": user_input})
|
28 |
+
|
29 |
+
# Tokenize and generate response
|
30 |
+
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
|
31 |
+
chat_history_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
33 |
+
|
34 |
+
# Append model response to history
|
35 |
st.session_state["conversation_history"].append({"role": "assistant", "content": response})
|
36 |
|
37 |
# Display the conversation
|
|
|
40 |
st.write(f"**You:** {message['content']}")
|
41 |
else:
|
42 |
st.write(f"**Bot:** {message['content']}")
|
43 |
+
|