chat-bot / app.py
sabahat-shakeel's picture
Update app.py
d7399f7 verified
raw
history blame
4.13 kB
# import streamlit as st
# from transformers import AutoModelForCausalLM, AutoTokenizer
# # Load the model and tokenizer
# @st.cache_resource
# def load_model_and_tokenizer():
# model_name = "microsoft/DialoGPT-medium" # Replace with your chosen model
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForCausalLM.from_pretrained(model_name)
# return tokenizer, model
# tokenizer, model = load_model_and_tokenizer()
# # Streamlit App
# st.title("General Chatbot")
# st.write("A chatbot powered by an open-source model from Hugging Face.")
# # Initialize the conversation
# if "conversation_history" not in st.session_state:
# st.session_state["conversation_history"] = []
# # Input box for user query
# user_input = st.text_input("You:", placeholder="Ask me anything...", key="user_input")
# if st.button("Send") and user_input:
# # Append user input to history
# st.session_state["conversation_history"].append({"role": "user", "content": user_input})
# # Tokenize and generate response
# input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
# chat_history_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
# response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
# # Append model response to history
# st.session_state["conversation_history"].append({"role": "assistant", "content": response})
# # Display the conversation
# for message in st.session_state["conversation_history"]:
# if message["role"] == "user":
# st.write(f"**You:** {message['content']}")
# else:
# st.write(f"**Bot:** {message['content']}")
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model and tokenizer
@st.cache_resource
def load_model_and_tokenizer():
model_name = "microsoft/DialoGPT-medium" # Replace with your chosen model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
return tokenizer, model
tokenizer, model = load_model_and_tokenizer()
# Streamlit App
st.title("General Chatbot")
st.write("A chatbot powered by an open-source model from Hugging Face.")
# Initialize the conversation history
if "conversation_history" not in st.session_state:
st.session_state["conversation_history"] = []
# Input box for user query
user_input = st.text_input("You:", placeholder="Ask me anything...", key="user_input")
if st.button("Send") and user_input:
# Append user input to history
st.session_state["conversation_history"].append({"role": "user", "content": user_input})
# Prepare the input for the model
conversation_context = ""
for message in st.session_state["conversation_history"]:
if message["role"] == "user":
conversation_context += f"User: {message['content']}\n"
elif message["role"] == "assistant":
conversation_context += f"Bot: {message['content']}\n"
input_ids = tokenizer.encode(conversation_context + "Bot:", return_tensors="pt")
# Generate the response with adjusted parameters
chat_history_ids = model.generate(
input_ids,
max_length=500, # Increase maximum length for longer responses
num_return_sequences=1,
temperature=0.2, # Adjust for creativity (lower is more focused, higher is more diverse)
top_p=0.5, # Use nucleus sampling for diversity
top_k=50, # Limit to top-k tokens for more controlled output
pad_token_id=tokenizer.eos_token_id
)
# Decode the response and add it to history
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
st.session_state["conversation_history"].append({"role": "assistant", "content": response})
# Display the conversation
for message in st.session_state["conversation_history"]:
if message["role"] == "user":
st.write(f"**You:** {message['content']}")
else:
st.write(f"**Bot:** {message['content']}")