chat-bot / app.py
sabahat-shakeel's picture
Update app.py
a8acb9b verified
raw
history blame
1.68 kB
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model and tokenizer
@st.cache_resource
def load_model_and_tokenizer():
model_name = "microsoft/DialoGPT-medium" # Replace with your chosen model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
return tokenizer, model
tokenizer, model = load_model_and_tokenizer()
# Streamlit App
st.title("General Chatbot")
st.write("A chatbot powered by an open-source model from Hugging Face.")
# Initialize the conversation
if "conversation_history" not in st.session_state:
st.session_state["conversation_history"] = []
# Input box for user query
user_input = st.text_input("You:", placeholder="Ask me anything...", key="user_input")
if st.button("Send") and user_input:
# Append user input to history
st.session_state["conversation_history"].append({"role": "user", "content": user_input})
# Tokenize and generate response
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
chat_history_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
# Append model response to history
st.session_state["conversation_history"].append({"role": "assistant", "content": response})
# Display the conversation
for message in st.session_state["conversation_history"]:
if message["role"] == "user":
st.write(f"**You:** {message['content']}")
else:
st.write(f"**Bot:** {message['content']}")