chat-bot / app.py
sabahat-shakeel's picture
Update app.py
1f5c69e verified
raw
history blame
3.56 kB
# import streamlit as st
# from transformers import AutoModelForCausalLM, AutoTokenizer
# # Load the model and tokenizer
# @st.cache_resource
# def load_model_and_tokenizer():
# model_name = "microsoft/DialoGPT-medium" # Replace with your chosen model
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForCausalLM.from_pretrained(model_name)
# return tokenizer, model
# tokenizer, model = load_model_and_tokenizer()
# # Streamlit App
# st.title("General Chatbot")
# st.write("A chatbot powered by an open-source model from Hugging Face.")
# # Initialize the conversation
# if "conversation_history" not in st.session_state:
# st.session_state["conversation_history"] = []
# # Input box for user query
# user_input = st.text_input("You:", placeholder="Ask me anything...", key="user_input")
# if st.button("Send") and user_input:
# # Append user input to history
# st.session_state["conversation_history"].append({"role": "user", "content": user_input})
# # Tokenize and generate response
# input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
# chat_history_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
# response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
# # Append model response to history
# st.session_state["conversation_history"].append({"role": "assistant", "content": response})
# # Display the conversation
# for message in st.session_state["conversation_history"]:
# if message["role"] == "user":
# st.write(f"**You:** {message['content']}")
# else:
# st.write(f"**Bot:** {message['content']}")
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
st.title("🤖 Smart Chatbot")
@st.cache_resource
def load_model():
model_name = "facebook/blenderbot-3B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
return pipeline("text2text-generation", model=model, tokenizer=tokenizer)
chatbot = load_model()
if "conversation" not in st.session_state:
st.session_state.conversation = []
# Display chat history
for msg in st.session_state.conversation:
with st.chat_message(msg["role"]):
st.markdown(msg["content"])
if prompt := st.chat_input("Ask me anything"):
# Add user message
st.session_state.conversation.append({"role": "user", "content": prompt})
# Format context
context = "\n".join([f"{msg['role']}: {msg['content']}" for msg in st.session_state.conversation[-3:]])
try:
with st.spinner("Thinking..."):
response = chatbot(
context,
max_length=200,
temperature=0.9,
top_k=60,
top_p=0.9,
num_beams=5,
no_repeat_ngram_size=3
)[0]['generated_text']
# Clean response
response = response.split("assistant:")[-1].strip()
# Ensure meaningful response
if not response or response.lower() in ["i don't know", "i'm not sure"]:
response = "I need to learn more about that. Could you clarify?"
except Exception as e:
response = "Let me check my knowledge sources and get back to you on that."
st.session_state.conversation.append({"role": "assistant", "content": response})
st.rerun()