chat-bot / app.py
sabahat-shakeel's picture
Update app.py
0136084 verified
raw
history blame
2.69 kB
# import streamlit as st
# from transformers import AutoModelForCausalLM, AutoTokenizer
# # Load the model and tokenizer
# @st.cache_resource
# def load_model_and_tokenizer():
# model_name = "microsoft/DialoGPT-medium" # Replace with your chosen model
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForCausalLM.from_pretrained(model_name)
# return tokenizer, model
# tokenizer, model = load_model_and_tokenizer()
# # Streamlit App
# st.title("General Chatbot")
# st.write("A chatbot powered by an open-source model from Hugging Face.")
# # Initialize the conversation
# if "conversation_history" not in st.session_state:
# st.session_state["conversation_history"] = []
# # Input box for user query
# user_input = st.text_input("You:", placeholder="Ask me anything...", key="user_input")
# if st.button("Send") and user_input:
# # Append user input to history
# st.session_state["conversation_history"].append({"role": "user", "content": user_input})
# # Tokenize and generate response
# input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
# chat_history_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
# response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
# # Append model response to history
# st.session_state["conversation_history"].append({"role": "assistant", "content": response})
# # Display the conversation
# for message in st.session_state["conversation_history"]:
# if message["role"] == "user":
# st.write(f"**You:** {message['content']}")
# else:
# st.write(f"**Bot:** {message['content']}")
import streamlit as st
from transformers import pipeline
st.title("🤖 Conversational Chatbot")
@st.cache_resource
def load_chatbot():
return pipeline("conversational", model="facebook/blenderbot-400M-distill")
chatbot = load_chatbot()
if "conversation" not in st.session_state:
st.session_state.conversation = []
# Display history
for msg in st.session_state.conversation:
with st.chat_message(msg["role"]):
st.markdown(msg["content"])
if prompt := st.chat_input("Say something"):
# Add user message
st.session_state.conversation.append({"role": "user", "content": prompt})
# Generate response
with st.spinner("Thinking..."):
result = chatbot(str(st.session_state.conversation))
# Extract bot response
response = result.generated_responses[-1]
# Add to conversation
st.session_state.conversation.append({"role": "assistant", "content": response})
st.rerun()