chat-bot / app.py
sabahat-shakeel's picture
Update app.py
00d9971 verified
raw
history blame
3.4 kB
# import streamlit as st
# from transformers import AutoModelForCausalLM, AutoTokenizer
# # Load the model and tokenizer
# @st.cache_resource
# def load_model_and_tokenizer():
# model_name = "microsoft/DialoGPT-medium" # Replace with your chosen model
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForCausalLM.from_pretrained(model_name)
# return tokenizer, model
# tokenizer, model = load_model_and_tokenizer()
# # Streamlit App
# st.title("General Chatbot")
# st.write("A chatbot powered by an open-source model from Hugging Face.")
# # Initialize the conversation
# if "conversation_history" not in st.session_state:
# st.session_state["conversation_history"] = []
# # Input box for user query
# user_input = st.text_input("You:", placeholder="Ask me anything...", key="user_input")
# if st.button("Send") and user_input:
# # Append user input to history
# st.session_state["conversation_history"].append({"role": "user", "content": user_input})
# # Tokenize and generate response
# input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
# chat_history_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
# response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
# # Append model response to history
# st.session_state["conversation_history"].append({"role": "assistant", "content": response})
# # Display the conversation
# for message in st.session_state["conversation_history"]:
# if message["role"] == "user":
# st.write(f"**You:** {message['content']}")
# else:
# st.write(f"**Bot:** {message['content']}")
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
st.title("🤖 Improved Chatbot")
# Initialize model and tokenizer
@st.cache_resource
def load_model():
model_name = "microsoft/DialoGPT-medium"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
return model, tokenizer
model, tokenizer = load_model()
# Initialize chat history
if "history" not in st.session_state:
st.session_state.history = []
# Display chat history
for message in st.session_state.history:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# User input
if prompt := st.chat_input("Type your message..."):
# Add user message to history
st.session_state.history.append({"role": "user", "content": prompt})
# Prepare context for the model
input_ids = tokenizer.encode(
"\n".join([f"{msg['role']}: {msg['content']}" for msg in st.session_state.history[-5:]]) + "\nassistant:",
return_tensors="pt"
)
# Generate response
with st.spinner("Thinking..."):
output = model.generate(
input_ids,
max_length=1000,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7
)
response = tokenizer.decode(output[0], skip_special_tokens=True).split("assistant:")[-1].strip()
# Add assistant response to history
st.session_state.history.append({"role": "assistant", "content": response})
st.rerun()