Spaces:
Sleeping
Sleeping
File size: 3,534 Bytes
1b6e6dd 694b5b3 c68c489 694b5b3 36ae2b9 c68c489 694b5b3 c68c489 36ae2b9 c68c489 31ac415 36ae2b9 c68c489 36ae2b9 c68c489 31ac415 36ae2b9 31ac415 36ae2b9 c68c489 31ac415 c68c489 31ac415 c68c489 31ac415 36ae2b9 c68c489 1b6e6dd 31ac415 c68c489 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import streamlit as st
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
# Configure the Hugging Face API key (no need to pass it in the pipeline call)
HF_API_KEY = st.secrets['huggingface_api_key']
# Ensure you're logged in using the Hugging Face CLI if using private models
# huggingface-cli login
# Initialize the Hugging Face model and tokenizer
model_name = 'gpt2-medium' # or another GPT-2 version you want to use
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Initialize the text generation pipeline
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
# Function to get response from the Hugging Face model
def get_chatbot_response(user_input):
try:
# Generate the response using the Hugging Face model
response = generator(user_input, max_length=100, num_return_sequences=1)
return response[0]['generated_text']
except Exception as e:
return f"Error: {str(e)}"
# Streamlit interface
st.set_page_config(page_title="Smart ChatBot", layout="centered")
# Custom CSS for chat bubbles with full width and emojis
st.markdown("""
<style>
.chat-container {
display: flex;
flex-direction: column;
width: 100%;
}
.chat-bubble {
width: 100%;
padding: 15px;
margin: 10px 0;
border-radius: 10px;
font-size: 18px;
color: white;
display: inline-block;
line-height: 1.5;
}
.user-bubble {
background: #6a82fb; /* Soft blue */
align-self: flex-end;
border-radius: 10px 10px 10px 10px;
}
.bot-bubble {
background: #fc5c7d; /* Soft pink */
align-self: flex-start;
border-radius: 10px 10px 10px 10px;
}
.chat-header {
font-size: 35px;
font-weight: bold;
margin-bottom: 20px;
color: #3d3d3d;
}
.emoji {
font-size: 22px;
margin-right: 10px;
}
</style>
""", unsafe_allow_html=True)
# Chat header and intro
st.markdown('<div class="chat-header">AI Chatbot - Your Companion π»</div>', unsafe_allow_html=True)
st.write("Powered by Hugging Face AI for smart, engaging conversations. π€")
# Initialize session state for conversation history if not already initialized
if "history" not in st.session_state:
st.session_state["history"] = []
# Create the chat form
with st.form(key="chat_form", clear_on_submit=True):
user_input = st.text_input("Your message here... βοΈ", max_chars=2000, label_visibility="collapsed")
submit_button = st.form_submit_button("Send π")
if submit_button:
if user_input:
# Get response from the chatbot
response = get_chatbot_response(user_input)
# Store user input and bot response in session state history
st.session_state.history.append((user_input, response))
else:
st.warning("Please Enter A Prompt π
")
# Display chat history
if st.session_state["history"]:
st.markdown('<div class="chat-container">', unsafe_allow_html=True)
for user_input, response in st.session_state["history"]:
st.markdown(f'<div class="chat-bubble user-bubble"><span class="emoji">π€</span>You: {user_input}</div>', unsafe_allow_html=True)
st.markdown(f'<div class="chat-bubble bot-bubble"><span class="emoji">π€</span>Bot: {response}</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
|