Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import numpy as np | |
import tensorflow as tf | |
import cv2 | |
# Set environment variable to avoid floating-point errors | |
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' | |
# Define the Mask R-CNN model architecture | |
def build_mask_rcnn_model(): | |
input_layer = tf.keras.layers.Input(shape=(224, 224, 3)) # Adjust input shape to match your model | |
# Example architecture, you should modify it to match your actual Mask R-CNN model | |
x = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(input_layer) | |
x = tf.keras.layers.MaxPooling2D((2, 2))(x) | |
x = tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(x) | |
x = tf.keras.layers.MaxPooling2D((2, 2))(x) | |
x = tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(x) | |
x = tf.keras.layers.UpSampling2D((2, 2))(x) | |
x = tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(x) | |
x = tf.keras.layers.UpSampling2D((2, 2))(x) | |
output_layer = tf.keras.layers.Conv2D(1, (1, 1), activation='sigmoid')(x) | |
model = tf.keras.models.Model(inputs=input_layer, outputs=output_layer) | |
return model | |
# Build the model and load weights | |
model = build_mask_rcnn_model() | |
# Load the Mask R-CNN model weights | |
model_path = os.path.join('toolkit', 'condmodel_100.h5') # Update with correct path | |
model.load_weights(model_path) | |
print("Mask R-CNN model loaded successfully with weights.") | |
# Function to apply Mask R-CNN for image segmentation | |
def apply_mask_rcnn(image): | |
try: | |
# Convert image to RGB (in case of RGBA or grayscale) | |
if image.shape[2] == 4: # Convert RGBA to RGB | |
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB) | |
# Resize the image to match the model input size | |
resized_image = cv2.resize(image, (224, 224)) # Adjust based on the input shape of your model | |
input_image = np.expand_dims(resized_image, axis=0) | |
# Use Mask R-CNN to predict the mask | |
prediction = model.predict(input_image) | |
# Extract mask (assumed to be the first output) | |
mask = np.squeeze(prediction[0]) | |
# Resize mask back to the original image size | |
mask = cv2.resize(mask, (image.shape[1], image.shape[0])) | |
# Create a segmentation overlay on the original image | |
mask_overlay = np.zeros_like(image) | |
mask_overlay[mask > 0.5] = [0, 255, 0] # Green mask | |
# Combine the original image with the mask | |
segmented_image = cv2.addWeighted(image, 1, mask_overlay, 0.5, 0) | |
return segmented_image | |
except Exception as e: | |
print(f"Error in segmentation: {e}") | |
return image # Return original image if segmentation fails | |
# Gradio interface definition | |
inputs = gr.Image(source="upload", tool="editor", type="numpy", label="Upload an image") | |
outputs = gr.Image(type="numpy", label="Segmented Image") | |
# Gradio app layout | |
with gr.Blocks() as demo: | |
gr.Markdown("<h1 style='text-align: center;'>Image Segmentation with Mask R-CNN</h1>") | |
gr.Markdown("Upload an image to see segmentation results using the Mask R-CNN model.") | |
# Input and output layout | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("### Upload an Image") | |
inputs.render() # Render the input (image upload) | |
# Submit button | |
gr.Button("Submit").click(fn=apply_mask_rcnn, inputs=inputs, outputs=outputs) | |
gr.Button("Clear").click(fn=lambda: None) | |
with gr.Column(): | |
gr.Markdown("### Segmented Image Output") | |
outputs.render() # Render the output (segmented image) | |
# Launch the Gradio app | |
demo.launch() | |