saba000farahani commited on
Commit
b49c81e
ยท
verified ยท
1 Parent(s): 9d13b01

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -23
app.py CHANGED
@@ -113,7 +113,7 @@ def predict_and_plot(velocity, temperature, precipitation, humidity):
113
  cleaning_times = calculate_cleaning_time(time_intervals, simulated_contamination_levels)
114
 
115
  # Lidar names
116
- lidar_names = ['์•ž/์ขŒ', '์•ž/์šฐ', '์ขŒ', '์šฐ', '์ง€๋ถ•', '๋’ค']
117
 
118
  # Plot the graph
119
  fig, ax = plt.subplots(figsize=(12, 8))
@@ -124,8 +124,8 @@ def predict_and_plot(velocity, temperature, precipitation, humidity):
124
  if i < len(cleaning_times):
125
  ax.scatter(cleaning_times[i], 0.4, color='k') # Mark the cleaning time point
126
 
127
- ax.set_title('๊ฐ ๋ผ์ด๋‹ค์˜ ์‹œ๊ฐ„ ๊ฒฝ๊ณผ์— ๋”ฐ๋ฅธ ์˜ค์—ผ ์ˆ˜์ค€')
128
- ax.set_xlabel('์‹œ๊ฐ„(์ดˆ)')
129
  ax.set_ylabel('์˜ค์—ผ ์ˆ˜์ค€')
130
  ax.legend()
131
  ax.grid(True)
@@ -139,7 +139,7 @@ def predict_and_plot(velocity, temperature, precipitation, humidity):
139
  return [plot_output] + contamination_output + gradients_output + cleaning_time_output
140
 
141
  except Exception as e:
142
- print(f"๊ทธ๋ผ๋””์˜ค ์ธํ„ฐํŽ˜์ด์Šค์—์„œ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")
143
  return [plt.figure()] + ["์˜ค๋ฅ˜"] * 18
144
 
145
  inputs = [
@@ -150,35 +150,35 @@ inputs = [
150
  ]
151
 
152
  contamination_outputs = [
153
- gr.Textbox(label="์•ž/์ขŒ ์˜ค์—ผ"),
154
- gr.Textbox(label="์•ž/์šฐ ์˜ค์—ผ"),
155
- gr.Textbox(label="์ขŒ ์˜ค์—ผ"),
156
- gr.Textbox(label="์šฐ ์˜ค์—ผ"),
157
- gr.Textbox(label="์ง€๋ถ• ์˜ค์—ผ"),
158
- gr.Textbox(label="๋’ค ์˜ค์—ผ")
159
  ]
160
 
161
  gradients_outputs = [
162
- gr.Textbox(label="์•ž/์ขŒ ๊ธฐ์šธ๊ธฐ"),
163
- gr.Textbox(label="์•ž/์šฐ ๊ธฐ์šธ๊ธฐ"),
164
- gr.Textbox(label="์ขŒ ๊ธฐ์šธ๊ธฐ"),
165
- gr.Textbox(label="์šฐ ๊ธฐ์šธ๊ธฐ"),
166
  gr.Textbox(label="์ง€๋ถ• ๊ธฐ์šธ๊ธฐ"),
167
  gr.Textbox(label="๋’ค ๊ธฐ์šธ๊ธฐ")
168
  ]
169
 
170
  cleaning_time_outputs = [
171
- gr.Textbox(label="์•ž/์ขŒ ์ฒญ์†Œ ์‹œ๊ฐ„"),
172
- gr.Textbox(label="์•ž/์šฐ ์ฒญ์†Œ ์‹œ๊ฐ„"),
173
- gr.Textbox(label="์ขŒ ์ฒญ์†Œ ์‹œ๊ฐ„"),
174
- gr.Textbox(label="์šฐ ์ฒญ์†Œ ์‹œ๊ฐ„"),
175
  gr.Textbox(label="์ง€๋ถ• ์ฒญ์†Œ ์‹œ๊ฐ„"),
176
  gr.Textbox(label="๋’ค ์ฒญ์†Œ ์‹œ๊ฐ„")
177
  ]
178
 
179
  with gr.Blocks(css=".column-container {height: 100%; display: flex; flex-direction: column; justify-content: space-between;}") as demo:
180
- gr.Markdown("<h1 style='text-align: center;'>ํ™˜๊ฒฝ ์š”์ธ ๊ธฐ๋ฐ˜ ์˜ค์—ผ, ๊ธฐ์šธ๊ธฐ ๋ฐ ์ฒญ์†Œ ์‹œ๊ฐ„ ์˜ˆ์ธก</h1>")
181
- gr.Markdown("์ด ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์€ ์†๋„, ์˜จ๋„, ๊ฐ•์ˆ˜๋Ÿ‰ ๋ฐ ์Šต๋„์™€ ๊ฐ™์€ ํ™˜๊ฒฝ ์š”์ธ์— ๋”ฐ๋ผ ์ž๋™์ฐจ์˜ LiDAR ์‹œ์Šคํ…œ์˜ ๋‹ค์–‘ํ•œ ๋ถ€๋ถ„์— ๋Œ€ํ•œ ์˜ค์—ผ ์ˆ˜์ค€, ๊ธฐ์šธ๊ธฐ ๋ฐ ์ฒญ์†Œ ์‹œ๊ฐ„์„ ์˜ˆ์ธกํ•ฉ๋‹ˆ๋‹ค.")
182
 
183
  # Top Section: Inputs and Car Image
184
  with gr.Row():
@@ -187,7 +187,7 @@ with gr.Blocks(css=".column-container {height: 100%; display: flex; flex-directi
187
  for inp in inputs:
188
  inp.render()
189
  submit_button = gr.Button(value="์ œ์ถœ", variant="primary")
190
- clear_button = gr.Button(value="์ง€์šฐ๊ธฐ")
191
 
192
  with gr.Column(scale=1):
193
  gr.Markdown("### LiDAR ์œ„์น˜")
@@ -196,7 +196,7 @@ with gr.Blocks(css=".column-container {height: 100%; display: flex; flex-directi
196
  # Bottom Section: Outputs (Three columns)
197
  with gr.Row():
198
  with gr.Column(scale=2):
199
- gr.Markdown("### ์˜ค์—ผ ์˜ˆ์ธก")
200
  for out in contamination_outputs:
201
  out.render()
202
 
@@ -212,7 +212,7 @@ with gr.Blocks(css=".column-container {height: 100%; display: flex; flex-directi
212
 
213
  # Graph below the outputs
214
  with gr.Row():
215
- plot_output = gr.Plot(label="์‹œ๊ฐ„ ๊ฒฝ๊ณผ์— ๋”ฐ๋ฅธ ์˜ค์—ผ ์ˆ˜์ค€")
216
 
217
  submit_button.click(
218
  fn=predict_and_plot,
 
113
  cleaning_times = calculate_cleaning_time(time_intervals, simulated_contamination_levels)
114
 
115
  # Lidar names
116
+ lidar_names = ['์•ž/์™ผ์ชฝ', '์•ž/์˜ค๋ฅธ์ชฝ', '์™ผ์ชฝ', '์˜ค๋ฅธ์ชฝ', '์ง€๋ถ•', '๋’ค']
117
 
118
  # Plot the graph
119
  fig, ax = plt.subplots(figsize=(12, 8))
 
124
  if i < len(cleaning_times):
125
  ax.scatter(cleaning_times[i], 0.4, color='k') # Mark the cleaning time point
126
 
127
+ ax.set_title('๊ฐ LiDAR์— ๋Œ€ํ•œ ์‹œ๊ฐ„ ๊ฒฝ๊ณผ์— ๋”ฐ๋ฅธ ์˜ค์—ผ ์ˆ˜์ค€')
128
+ ax.set_xlabel('์‹œ๊ฐ„ (์ดˆ)')
129
  ax.set_ylabel('์˜ค์—ผ ์ˆ˜์ค€')
130
  ax.legend()
131
  ax.grid(True)
 
139
  return [plot_output] + contamination_output + gradients_output + cleaning_time_output
140
 
141
  except Exception as e:
142
+ print(f"Gradio ์ธํ„ฐํŽ˜์ด์Šค ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")
143
  return [plt.figure()] + ["์˜ค๋ฅ˜"] * 18
144
 
145
  inputs = [
 
150
  ]
151
 
152
  contamination_outputs = [
153
+ gr.Textbox(label="์•ž ์™ผ์ชฝ ์˜ค์—ผ๋„"),
154
+ gr.Textbox(label="์•ž ์˜ค๋ฅธ์ชฝ ์˜ค์—ผ๋„"),
155
+ gr.Textbox(label="์™ผ์ชฝ ์˜ค์—ผ๋„"),
156
+ gr.Textbox(label="์˜ค๋ฅธ์ชฝ ์˜ค์—ผ๋„"),
157
+ gr.Textbox(label="์ง€๋ถ• ์˜ค์—ผ๋„"),
158
+ gr.Textbox(label="๋’ค ์˜ค์—ผ๋„")
159
  ]
160
 
161
  gradients_outputs = [
162
+ gr.Textbox(label="์•ž ์™ผ์ชฝ ๊ธฐ์šธ๊ธฐ"),
163
+ gr.Textbox(label="์•ž ์˜ค๋ฅธ์ชฝ ๊ธฐ์šธ๊ธฐ"),
164
+ gr.Textbox(label="์™ผ์ชฝ ๊ธฐ์šธ๊ธฐ"),
165
+ gr.Textbox(label="์˜ค๋ฅธ์ชฝ ๊ธฐ์šธ๊ธฐ"),
166
  gr.Textbox(label="์ง€๋ถ• ๊ธฐ์šธ๊ธฐ"),
167
  gr.Textbox(label="๋’ค ๊ธฐ์šธ๊ธฐ")
168
  ]
169
 
170
  cleaning_time_outputs = [
171
+ gr.Textbox(label="์•ž ์™ผ์ชฝ ์ฒญ์†Œ ์‹œ๊ฐ„"),
172
+ gr.Textbox(label="์•ž ์˜ค๋ฅธ์ชฝ ์ฒญ์†Œ ์‹œ๊ฐ„"),
173
+ gr.Textbox(label="์™ผ์ชฝ ์ฒญ์†Œ ์‹œ๊ฐ„"),
174
+ gr.Textbox(label="์˜ค๋ฅธ์ชฝ ์ฒญ์†Œ ์‹œ๊ฐ„"),
175
  gr.Textbox(label="์ง€๋ถ• ์ฒญ์†Œ ์‹œ๊ฐ„"),
176
  gr.Textbox(label="๋’ค ์ฒญ์†Œ ์‹œ๊ฐ„")
177
  ]
178
 
179
  with gr.Blocks(css=".column-container {height: 100%; display: flex; flex-direction: column; justify-content: space-between;}") as demo:
180
+ gr.Markdown("<h1 style='text-align: center;'>ํ™˜๊ฒฝ ์š”์ธ ๊ธฐ๋ฐ˜ ์˜ค์—ผ๋„, ๊ธฐ์šธ๊ธฐ ๋ฐ ์ฒญ์†Œ ์‹œ๊ฐ„ ์˜ˆ์ธก</h1>")
181
+ gr.Markdown("์ด ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์€ ์†๋„, ์˜จ๋„, ๊ฐ•์ˆ˜๋Ÿ‰ ๋ฐ ์Šต๋„์™€ ๊ฐ™์€ ํ™˜๊ฒฝ ์š”์ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž๋™์ฐจ์˜ LiDAR ์‹œ์Šคํ…œ์˜ ๋‹ค์–‘ํ•œ ๋ถ€์œ„์— ๋Œ€ํ•œ ์˜ค์—ผ๋„, ๊ธฐ์šธ๊ธฐ ๋ฐ ์ฒญ์†Œ ์‹œ๊ฐ„์„ ์˜ˆ์ธกํ•ฉ๋‹ˆ๋‹ค.")
182
 
183
  # Top Section: Inputs and Car Image
184
  with gr.Row():
 
187
  for inp in inputs:
188
  inp.render()
189
  submit_button = gr.Button(value="์ œ์ถœ", variant="primary")
190
+ clear_button = gr.Button(value="์ดˆ๊ธฐํ™”")
191
 
192
  with gr.Column(scale=1):
193
  gr.Markdown("### LiDAR ์œ„์น˜")
 
196
  # Bottom Section: Outputs (Three columns)
197
  with gr.Row():
198
  with gr.Column(scale=2):
199
+ gr.Markdown("### ์˜ค์—ผ๋„ ์˜ˆ์ธก")
200
  for out in contamination_outputs:
201
  out.render()
202
 
 
212
 
213
  # Graph below the outputs
214
  with gr.Row():
215
+ plot_output = gr.Plot(label="์‹œ๊ฐ„ ๊ฒฝ๊ณผ์— ๋”ฐ๋ฅธ ์˜ค์—ผ๋„")
216
 
217
  submit_button.click(
218
  fn=predict_and_plot,