Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import json
|
4 |
+
import joblib
|
5 |
+
import tensorflow as tf
|
6 |
+
import pandas as pd
|
7 |
+
from joblib import load
|
8 |
+
from tensorflow.keras.models import load_model
|
9 |
+
from sklearn.preprocessing import MinMaxScaler
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import os
|
12 |
+
import sklearn
|
13 |
+
|
14 |
+
# Display library versions
|
15 |
+
print(f"Gradio version: {gr.__version__}")
|
16 |
+
print(f"NumPy version: {np.__version__}")
|
17 |
+
print(f"Scikit-learn version: {sklearn.__version__}")
|
18 |
+
print(f"Joblib version: {joblib.__version__}")
|
19 |
+
print(f"TensorFlow version: {tf.__version__}")
|
20 |
+
print(f"Pandas version: {pd.__version__}")
|
21 |
+
|
22 |
+
# Directory paths for the saved models
|
23 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
24 |
+
scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.json')
|
25 |
+
rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.joblib')
|
26 |
+
mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.keras')
|
27 |
+
meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.joblib')
|
28 |
+
image_path = os.path.join(script_dir, 'toolkit', 'car.png')
|
29 |
+
|
30 |
+
# Load the scaler and models
|
31 |
+
try:
|
32 |
+
# Load the scaler
|
33 |
+
with open(scaler_path, 'r') as f:
|
34 |
+
scaler_params = json.load(f)
|
35 |
+
scaler_X = MinMaxScaler()
|
36 |
+
scaler_X.scale_ = np.array(scaler_params["scale_"])
|
37 |
+
scaler_X.min_ = np.array(scaler_params["min_"])
|
38 |
+
scaler_X.data_min_ = np.array(scaler_params["data_min_"])
|
39 |
+
scaler_X.data_max_ = np.array(scaler_params["data_max_"])
|
40 |
+
scaler_X.data_range_ = np.array(scaler_params["data_range_"])
|
41 |
+
scaler_X.n_features_in_ = scaler_params["n_features_in_"]
|
42 |
+
scaler_X.feature_names_in_ = np.array(scaler_params["feature_names_in_"])
|
43 |
+
|
44 |
+
# Load the models
|
45 |
+
loaded_rf_model = load(rf_model_path)
|
46 |
+
print("Random Forest model loaded successfully.")
|
47 |
+
loaded_mlp_model = load_model(mlp_model_path)
|
48 |
+
print("MLP model loaded successfully.")
|
49 |
+
loaded_meta_model = load(meta_model_path)
|
50 |
+
print("Meta model loaded successfully.")
|
51 |
+
except Exception as e:
|
52 |
+
print(f"Error loading models or scaler: {e}")
|
53 |
+
|
54 |
+
def predict_and_plot(velocity, temperature, precipitation, humidity):
|
55 |
+
try:
|
56 |
+
# Prepare the example data
|
57 |
+
example_data = pd.DataFrame({
|
58 |
+
'Velocity(mph)': [velocity],
|
59 |
+
'Temperature': [temperature],
|
60 |
+
'Precipitation': [precipitation],
|
61 |
+
'Humidity': [humidity]
|
62 |
+
})
|
63 |
+
|
64 |
+
# Scale the example data
|
65 |
+
example_data_scaled = scaler_X.transform(example_data)
|
66 |
+
|
67 |
+
# Function to predict contamination levels and gradients
|
68 |
+
def predict_contamination_and_gradients(example_data_scaled):
|
69 |
+
# Predict using MLP model
|
70 |
+
mlp_predictions_contamination, mlp_predictions_gradients = loaded_mlp_model.predict(example_data_scaled)
|
71 |
+
|
72 |
+
# Predict using RF model
|
73 |
+
rf_predictions = loaded_rf_model.predict(example_data_scaled)
|
74 |
+
|
75 |
+
# Combine predictions for meta model
|
76 |
+
combined_features = np.concatenate([np.concatenate([mlp_predictions_contamination, mlp_predictions_gradients], axis=1), rf_predictions], axis=1)
|
77 |
+
|
78 |
+
# Predict using meta model
|
79 |
+
meta_predictions = loaded_meta_model.predict(combined_features)
|
80 |
+
|
81 |
+
return meta_predictions[:, :6], meta_predictions[:, 6:] # Split predictions into contamination and gradients
|
82 |
+
|
83 |
+
# Predict contamination levels and gradients for the single example
|
84 |
+
contamination_levels, gradients = predict_contamination_and_gradients(example_data_scaled)
|
85 |
+
|
86 |
+
# Simulate contamination levels at multiple time intervals
|
87 |
+
time_intervals = np.arange(0, 3601, 60) # Simulating time intervals from 0 to 600 seconds
|
88 |
+
|
89 |
+
# Generate simulated contamination levels (linear interpolation between predicted values)
|
90 |
+
simulated_contamination_levels = np.array([
|
91 |
+
np.linspace(contamination_levels[0][i], contamination_levels[0][i] * 2, len(time_intervals))
|
92 |
+
for i in range(contamination_levels.shape[1])
|
93 |
+
]).T
|
94 |
+
|
95 |
+
# Function to calculate cleaning time using linear interpolation
|
96 |
+
def calculate_cleaning_time(time_intervals, contamination_levels, threshold=0.4):
|
97 |
+
cleaning_times = []
|
98 |
+
for i in range(contamination_levels.shape[1]):
|
99 |
+
levels = contamination_levels[:, i]
|
100 |
+
for j in range(1, len(levels)):
|
101 |
+
if levels[j-1] <= threshold <= levels[j]:
|
102 |
+
# Linear interpolation
|
103 |
+
t1, t2 = time_intervals[j-1], time_intervals[j]
|
104 |
+
c1, c2 = levels[j-1], levels[j]
|
105 |
+
cleaning_time = t1 + (threshold - c1) * (t2 - t1) / (c2 - c1)
|
106 |
+
cleaning_times.append(cleaning_time)
|
107 |
+
break
|
108 |
+
else:
|
109 |
+
cleaning_times.append(time_intervals[-1]) # If threshold is not reached
|
110 |
+
return cleaning_times
|
111 |
+
|
112 |
+
# Calculate cleaning times for all 6 lidars
|
113 |
+
cleaning_times = calculate_cleaning_time(time_intervals, simulated_contamination_levels)
|
114 |
+
|
115 |
+
# Lidar names
|
116 |
+
lidar_names = ['F/L', 'F/R', 'Left', 'Right', 'Roof', 'Rear']
|
117 |
+
|
118 |
+
# Plot the graph
|
119 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
120 |
+
|
121 |
+
for i in range(simulated_contamination_levels.shape[1]):
|
122 |
+
ax.plot(time_intervals, simulated_contamination_levels[:, i], label=f'{lidar_names[i]}')
|
123 |
+
ax.axhline(y=0.4, color='r', linestyle='--', label='Contamination Threshold' if i == 0 else "")
|
124 |
+
if i < len(cleaning_times):
|
125 |
+
ax.scatter(cleaning_times[i], 0.4, color='k') # Mark the cleaning time point
|
126 |
+
|
127 |
+
ax.set_title('Contamination Levels Over Time for Each Lidar')
|
128 |
+
ax.set_xlabel('Time (seconds)')
|
129 |
+
ax.set_ylabel('Contamination Level')
|
130 |
+
ax.legend()
|
131 |
+
ax.grid(True)
|
132 |
+
|
133 |
+
# Flatten the results into a single list of 19 outputs (1 plot + 6 contamination + 6 gradients + 6 cleaning times)
|
134 |
+
plot_output = fig
|
135 |
+
contamination_output = [f"{val * 100:.2f}%" for val in contamination_levels[0]]
|
136 |
+
gradients_output = [f"{val:.4f}" for val in gradients[0]]
|
137 |
+
cleaning_time_output = [f"{val:.2f}" for val in cleaning_times]
|
138 |
+
|
139 |
+
return [plot_output] + contamination_output + gradients_output + cleaning_time_output
|
140 |
+
|
141 |
+
except Exception as e:
|
142 |
+
print(f"Error in Gradio interface: {e}")
|
143 |
+
return [plt.figure()] + ["Error"] * 18
|
144 |
+
|
145 |
+
inputs = [
|
146 |
+
gr.Slider(minimum=0, maximum=100, value=50, step=0.05, label="Velocity (mph)"),
|
147 |
+
gr.Slider(minimum=-2, maximum=30, value=0, step=0.5, label="Temperature (°C)"),
|
148 |
+
gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Precipitation (inch)"),
|
149 |
+
gr.Slider(minimum=0, maximum=100, value=50, label="Humidity (%)")
|
150 |
+
]
|
151 |
+
|
152 |
+
contamination_outputs = [
|
153 |
+
gr.Textbox(label="Front Left Contamination"),
|
154 |
+
gr.Textbox(label="Front Right Contamination"),
|
155 |
+
gr.Textbox(label="Left Contamination"),
|
156 |
+
gr.Textbox(label="Right Contamination"),
|
157 |
+
gr.Textbox(label="Roof Contamination"),
|
158 |
+
gr.Textbox(label="Rear Contamination")
|
159 |
+
]
|
160 |
+
|
161 |
+
gradients_outputs = [
|
162 |
+
gr.Textbox(label="Front Left Gradient"),
|
163 |
+
gr.Textbox(label="Front Right Gradient"),
|
164 |
+
gr.Textbox(label="Left Gradient"),
|
165 |
+
gr.Textbox(label="Right Gradient"),
|
166 |
+
gr.Textbox(label="Roof Gradient"),
|
167 |
+
gr.Textbox(label="Rear Gradient")
|
168 |
+
]
|
169 |
+
|
170 |
+
cleaning_time_outputs = [
|
171 |
+
gr.Textbox(label="Front Left Cleaning Time"),
|
172 |
+
gr.Textbox(label="Front Right Cleaning Time"),
|
173 |
+
gr.Textbox(label="Left Cleaning Time"),
|
174 |
+
gr.Textbox(label="Right Cleaning Time"),
|
175 |
+
gr.Textbox(label="Roof Cleaning Time"),
|
176 |
+
gr.Textbox(label="Rear Cleaning Time")
|
177 |
+
]
|
178 |
+
|
179 |
+
with gr.Blocks(css=".column-container {height: 100%; display: flex; flex-direction: column; justify-content: space-between;}") as demo:
|
180 |
+
gr.Markdown("<h1 style='text-align: center;'>Environmental Factor-Based Contamination, Gradient, & Cleaning Time Prediction</h1>")
|
181 |
+
gr.Markdown("This application predicts the contamination levels, gradients, and cleaning times for different parts of a car's LiDAR system based on environmental factors such as velocity, temperature, precipitation, and humidity.")
|
182 |
+
|
183 |
+
# Top Section: Inputs and Car Image
|
184 |
+
with gr.Row():
|
185 |
+
with gr.Column(scale=2, elem_classes="column-container"):
|
186 |
+
gr.Markdown("### Input Parameters")
|
187 |
+
for inp in inputs:
|
188 |
+
inp.render()
|
189 |
+
submit_button = gr.Button(value="Submit", variant="primary")
|
190 |
+
clear_button = gr.Button(value="Clear")
|
191 |
+
|
192 |
+
with gr.Column(scale=1):
|
193 |
+
gr.Markdown("### Location of LiDARs")
|
194 |
+
gr.Image(image_path)
|
195 |
+
|
196 |
+
# Bottom Section: Outputs (Three columns)
|
197 |
+
with gr.Row():
|
198 |
+
with gr.Column(scale=2):
|
199 |
+
gr.Markdown("### Contamination Predictions")
|
200 |
+
for out in contamination_outputs:
|
201 |
+
out.render()
|
202 |
+
|
203 |
+
with gr.Column(scale=2):
|
204 |
+
gr.Markdown("### Gradient Predictions")
|
205 |
+
for out in gradients_outputs:
|
206 |
+
out.render()
|
207 |
+
|
208 |
+
with gr.Column(scale=2):
|
209 |
+
gr.Markdown("### Cleaning Time Predictions")
|
210 |
+
for out in cleaning_time_outputs:
|
211 |
+
out.render()
|
212 |
+
|
213 |
+
# Graph below the outputs
|
214 |
+
with gr.Row():
|
215 |
+
plot_output = gr.Plot(label="Contamination Levels Over Time")
|
216 |
+
|
217 |
+
submit_button.click(
|
218 |
+
fn=predict_and_plot,
|
219 |
+
inputs=inputs,
|
220 |
+
outputs=[plot_output] + contamination_outputs + gradients_outputs + cleaning_time_outputs
|
221 |
+
)
|
222 |
+
clear_button.click(fn=lambda: None)
|
223 |
+
|
224 |
+
demo.launch()
|