saba000farahani's picture
Update app.py
7cf3795 verified
import gradio as gr
import numpy as np
import json
import joblib
import tensorflow as tf
import pandas as pd
from joblib import load
from tensorflow.keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import os
import sklearn
# Display library versions
print(f"Gradio version: {gr.__version__}")
print(f"NumPy version: {np.__version__}")
print(f"Scikit-learn version: {sklearn.__version__}")
print(f"Joblib version: {joblib.__version__}")
print(f"TensorFlow version: {tf.__version__}")
print(f"Pandas version: {pd.__version__}")
# Directory paths for the saved models
script_dir = os.path.dirname(os.path.abspath(__file__))
scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.json')
rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.joblib')
mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.keras')
meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.joblib')
image_path = os.path.join(script_dir, 'toolkit', 'car.png')
# Load the scaler and models
try:
# Load the scaler
with open(scaler_path, 'r') as f:
scaler_params = json.load(f)
scaler_X = MinMaxScaler()
scaler_X.scale_ = np.array(scaler_params["scale_"])
scaler_X.min_ = np.array(scaler_params["min_"])
scaler_X.data_min_ = np.array(scaler_params["data_min_"])
scaler_X.data_max_ = np.array(scaler_params["data_max_"])
scaler_X.data_range_ = np.array(scaler_params["data_range_"])
scaler_X.n_features_in_ = scaler_params["n_features_in_"]
scaler_X.feature_names_in_ = np.array(scaler_params["feature_names_in_"])
# Load the models
loaded_rf_model = load(rf_model_path)
print("Random Forest model loaded successfully.")
loaded_mlp_model = load_model(mlp_model_path)
print("MLP model loaded successfully.")
loaded_meta_model = load(meta_model_path)
print("Meta model loaded successfully.")
except Exception as e:
print(f"Error loading models or scaler: {e}")
def predict_and_plot(velocity, temperature, precipitation, humidity):
try:
# Prepare the example data
example_data = pd.DataFrame({
'Velocity(mph)': [velocity],
'Temperature': [temperature],
'Precipitation': [precipitation],
'Humidity': [humidity]
})
# Scale the example data
example_data_scaled = scaler_X.transform(example_data)
# Function to predict contamination levels and gradients
def predict_contamination_and_gradients(example_data_scaled):
# Predict using MLP model
mlp_predictions_contamination, mlp_predictions_gradients = loaded_mlp_model.predict(example_data_scaled)
# Predict using RF model
rf_predictions = loaded_rf_model.predict(example_data_scaled)
# Combine predictions for meta model
combined_features = np.concatenate([np.concatenate([mlp_predictions_contamination, mlp_predictions_gradients], axis=1), rf_predictions], axis=1)
# Predict using meta model
meta_predictions = loaded_meta_model.predict(combined_features)
return meta_predictions[:, :6], meta_predictions[:, 6:] # Split predictions into contamination and gradients
# Predict contamination levels and gradients for the single example
contamination_levels, gradients = predict_contamination_and_gradients(example_data_scaled)
# Simulate contamination levels at multiple time intervals
time_intervals = np.arange(0, 3601, 60) # Simulating time intervals from 0 to 600 seconds
# Generate simulated contamination levels (linear interpolation between predicted values)
simulated_contamination_levels = np.array([
np.linspace(contamination_levels[0][i], contamination_levels[0][i] * 2, len(time_intervals))
for i in range(contamination_levels.shape[1])
]).T
# Function to calculate cleaning time using linear interpolation
def calculate_cleaning_time(time_intervals, contamination_levels, threshold=0.4):
cleaning_times = []
for i in range(contamination_levels.shape[1]):
levels = contamination_levels[:, i]
for j in range(1, len(levels)):
if levels[j-1] <= threshold <= levels[j]:
# Linear interpolation
t1, t2 = time_intervals[j-1], time_intervals[j]
c1, c2 = levels[j-1], levels[j]
cleaning_time = t1 + (threshold - c1) * (t2 - t1) / (c2 - c1)
cleaning_times.append(cleaning_time)
break
else:
cleaning_times.append(time_intervals[-1]) # If threshold is not reached
return cleaning_times
# Calculate cleaning times for all 6 lidars
cleaning_times = calculate_cleaning_time(time_intervals, simulated_contamination_levels)
# Lidar names
lidar_names = ['F/L', 'F/R', 'Left', 'Right', 'Roof', 'Rear']
# Plot the graph
fig, ax = plt.subplots(figsize=(12, 8))
for i in range(simulated_contamination_levels.shape[1]):
ax.plot(time_intervals, simulated_contamination_levels[:, i], label=f'{lidar_names[i]}')
ax.axhline(y=0.4, color='r', linestyle='--', label='Contamination Threshold' if i == 0 else "")
if i < len(cleaning_times):
ax.scatter(cleaning_times[i], 0.4, color='k') # Mark the cleaning time point
ax.set_title('Contamination Levels Over Time for Each Lidar')
ax.set_xlabel('Time (seconds)')
ax.set_ylabel('Contamination Level')
ax.legend()
ax.grid(True)
# Flatten the results into a single list of 19 outputs (1 plot + 6 contamination + 6 gradients + 6 cleaning times)
plot_output = fig
contamination_output = [f"{val * 100:.2f}%" for val in contamination_levels[0]]
gradients_output = [f"{val:.4f}" for val in gradients[0]]
cleaning_time_output = [f"{val:.2f}" for val in cleaning_times]
return [plot_output] + contamination_output + gradients_output + cleaning_time_output
except Exception as e:
print(f"Error in Gradio interface: {e}")
return [plt.figure()] + ["Error"] * 18
inputs = [
gr.Slider(minimum=0, maximum=100, value=50, step=0.05, label="์†๋„ (mph)"),
gr.Slider(minimum=-2, maximum=30, value=0, step=0.5, label="์˜จ๋„ (ยฐC)"),
gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="๊ฐ•์ˆ˜๋Ÿ‰ (inch)"),
gr.Slider(minimum=0, maximum=100, value=50, label="์Šต๋„ (%)")
]
contamination_outputs = [
gr.Textbox(label="์•ž ์™ผ์ชฝ ์˜ค์—ผ๋„"),
gr.Textbox(label="์•ž ์˜ค๋ฅธ์ชฝ ์˜ค์—ผ๋„"),
gr.Textbox(label="์™ผ์ชฝ ์˜ค์—ผ๋„"),
gr.Textbox(label="์˜ค๋ฅธ์ชฝ ์˜ค์—ผ๋„"),
gr.Textbox(label="์ง€๋ถ• ์˜ค์—ผ๋„"),
gr.Textbox(label="๋’ค ์˜ค์—ผ๋„")
]
gradients_outputs = [
gr.Textbox(label="์•ž ์™ผ์ชฝ ๊ธฐ์šธ๊ธฐ"),
gr.Textbox(label="์•ž ์˜ค๋ฅธ์ชฝ ๊ธฐ์šธ๊ธฐ"),
gr.Textbox(label="์™ผ์ชฝ ๊ธฐ์šธ๊ธฐ"),
gr.Textbox(label="์˜ค๋ฅธ์ชฝ ๊ธฐ์šธ๊ธฐ"),
gr.Textbox(label="์ง€๋ถ• ๊ธฐ์šธ๊ธฐ"),
gr.Textbox(label="๋’ค ๊ธฐ์šธ๊ธฐ")
]
cleaning_time_outputs = [
gr.Textbox(label="์•ž ์™ผ์ชฝ ์ฒญ์†Œ ์‹œ๊ฐ„"),
gr.Textbox(label="์•ž ์˜ค๋ฅธ์ชฝ ์ฒญ์†Œ ์‹œ๊ฐ„"),
gr.Textbox(label="์™ผ์ชฝ ์ฒญ์†Œ ์‹œ๊ฐ„"),
gr.Textbox(label="์˜ค๋ฅธ์ชฝ ์ฒญ์†Œ ์‹œ๊ฐ„"),
gr.Textbox(label="์ง€๋ถ• ์ฒญ์†Œ ์‹œ๊ฐ„"),
gr.Textbox(label="๋’ค ์ฒญ์†Œ ์‹œ๊ฐ„")
]
with gr.Blocks(css=".column-container {height: 100%; display: flex; flex-direction: column; justify-content: space-between;}") as demo:
gr.Markdown("<h1 style='text-align: center;'>ํ™˜๊ฒฝ ์š”์ธ ๊ธฐ๋ฐ˜ ์˜ค์—ผ๋„, ๊ธฐ์šธ๊ธฐ ๋ฐ ์ฒญ์†Œ ์‹œ๊ฐ„ ์˜ˆ์ธก</h1>")
gr.Markdown("์ด ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์€ ์†๋„, ์˜จ๋„, ๊ฐ•์ˆ˜๋Ÿ‰ ๋ฐ ์Šต๋„์™€ ๊ฐ™์€ ํ™˜๊ฒฝ ์š”์ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž๋™์ฐจ์˜ LiDAR ์‹œ์Šคํ…œ์˜ ๋‹ค์–‘ํ•œ ๋ถ€์œ„์— ๋Œ€ํ•œ ์˜ค์—ผ๋„, ๊ธฐ์šธ๊ธฐ ๋ฐ ์ฒญ์†Œ ์‹œ๊ฐ„์„ ์˜ˆ์ธกํ•ฉ๋‹ˆ๋‹ค.")
# Top Section: Inputs and Car Image
with gr.Row():
with gr.Column(scale=2, elem_classes="column-container"):
gr.Markdown("### ์ž…๋ ฅ ๋งค๊ฐœ๋ณ€์ˆ˜")
for inp in inputs:
inp.render()
submit_button = gr.Button(value="์ œ์ถœ", variant="primary")
clear_button = gr.Button(value="์ดˆ๊ธฐํ™”")
with gr.Column(scale=1):
gr.Markdown("### LiDAR ์œ„์น˜")
gr.Image(image_path)
# Bottom Section: Outputs (Three columns)
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### ์˜ค์—ผ๋„ ์˜ˆ์ธก ยฑ 7.1%")
for out in contamination_outputs:
out.render()
with gr.Column(scale=2):
gr.Markdown("### ๊ธฐ์šธ๊ธฐ ์˜ˆ์ธก")
for out in gradients_outputs:
out.render()
with gr.Column(scale=2):
gr.Markdown("### ์ฒญ์†Œ ์‹œ๊ฐ„ ์˜ˆ์ธก")
for out in cleaning_time_outputs:
out.render()
# Graph below the outputs
with gr.Row():
plot_output = gr.Plot(label="์‹œ๊ฐ„ ๊ฒฝ๊ณผ์— ๋”ฐ๋ฅธ ์˜ค์—ผ๋„")
submit_button.click(
fn=predict_and_plot,
inputs=inputs,
outputs=[plot_output] + contamination_outputs + gradients_outputs + cleaning_time_outputs
)
clear_button.click(fn=lambda: None)
demo.launch()