import gradio as gr import numpy as np import json import joblib import tensorflow as tf import pandas as pd from joblib import load from tensorflow.keras.models import load_model from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import os import sklearn # Display library versions print(f"Gradio version: {gr.__version__}") print(f"NumPy version: {np.__version__}") print(f"Scikit-learn version: {sklearn.__version__}") print(f"Joblib version: {joblib.__version__}") print(f"TensorFlow version: {tf.__version__}") print(f"Pandas version: {pd.__version__}") # Directory paths for the saved models script_dir = os.path.dirname(os.path.abspath(__file__)) scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.json') rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.joblib') mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.keras') meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.joblib') image_path = os.path.join(script_dir, 'toolkit', 'car.png') # Load the scaler and models try: # Load the scaler with open(scaler_path, 'r') as f: scaler_params = json.load(f) scaler_X = MinMaxScaler() scaler_X.scale_ = np.array(scaler_params["scale_"]) scaler_X.min_ = np.array(scaler_params["min_"]) scaler_X.data_min_ = np.array(scaler_params["data_min_"]) scaler_X.data_max_ = np.array(scaler_params["data_max_"]) scaler_X.data_range_ = np.array(scaler_params["data_range_"]) scaler_X.n_features_in_ = scaler_params["n_features_in_"] scaler_X.feature_names_in_ = np.array(scaler_params["feature_names_in_"]) # Load the models loaded_rf_model = load(rf_model_path) print("Random Forest model loaded successfully.") loaded_mlp_model = load_model(mlp_model_path) print("MLP model loaded successfully.") loaded_meta_model = load(meta_model_path) print("Meta model loaded successfully.") except Exception as e: print(f"Error loading models or scaler: {e}") def predict_and_plot(velocity, temperature, precipitation, humidity): try: # Prepare the example data example_data = pd.DataFrame({ 'Velocity(mph)': [velocity], 'Temperature': [temperature], 'Precipitation': [precipitation], 'Humidity': [humidity] }) # Scale the example data example_data_scaled = scaler_X.transform(example_data) # Function to predict contamination levels def predict_contamination(example_data_scaled): # Predict using MLP model mlp_predictions_contamination, mlp_predictions_gradients = loaded_mlp_model.predict(example_data_scaled) # Predict using RF model rf_predictions = loaded_rf_model.predict(example_data_scaled) # Combine predictions for meta model combined_features = np.concatenate([np.concatenate([mlp_predictions_contamination, mlp_predictions_gradients], axis=1), rf_predictions], axis=1) # Predict using meta model meta_predictions = loaded_meta_model.predict(combined_features) return meta_predictions[:, :6] # Assuming the first 6 columns are contamination predictions # Predict contamination levels for the single example contamination_levels = predict_contamination(example_data_scaled) # Simulate contamination levels at multiple time intervals time_intervals = np.arange(0, 601, 60) # Simulating time intervals from 0 to 600 seconds # Generate simulated contamination levels (linear interpolation between predicted values) simulated_contamination_levels = np.array([ np.linspace(contamination_levels[0][i], contamination_levels[0][i] * 2, len(time_intervals)) for i in range(contamination_levels.shape[1]) ]).T # Function to calculate cleaning time using linear interpolation def calculate_cleaning_time(time_intervals, contamination_levels, threshold=0.4): cleaning_times = [] for i in range(contamination_levels.shape[1]): levels = contamination_levels[:, i] for j in range(1, len(levels)): if levels[j-1] <= threshold <= levels[j]: # Linear interpolation t1, t2 = time_intervals[j-1], time_intervals[j] c1, c2 = levels[j-1], levels[j] cleaning_time = t1 + (threshold - c1) * (t2 - t1) / (c2 - c1) cleaning_times.append(cleaning_time) break return cleaning_times # Calculate cleaning times for all 6 lidars cleaning_times = calculate_cleaning_time(time_intervals, simulated_contamination_levels) # Lidar names lidar_names = ['F/L', 'F/R', 'Left', '