saba000farahani commited on
Commit
b4b5e67
·
verified ·
1 Parent(s): ee36746

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -5,12 +5,11 @@ import joblib
5
  import tensorflow as tf
6
  import pandas as pd
7
  from joblib import load
8
-
9
  from tensorflow.keras.models import load_model
10
  from sklearn.preprocessing import MinMaxScaler
11
  import os
12
- import sklearn
13
 
 
14
  print(f"Gradio version: {gr.__version__}")
15
  print(f"NumPy version: {np.__version__}")
16
  print(f"Scikit-learn version: {sklearn.__version__}")
@@ -112,19 +111,24 @@ outputs = [
112
  ]
113
 
114
  with gr.Blocks() as demo:
115
- gr.Markdown("# Environmental Factor-Based Contamination Level Prediction")
116
- gr.Markdown("Enter the environmental factors to get the contamination levels for Front Left, Front Right, Left, Right, Roof, and Rear LiDARs.")
 
 
117
  with gr.Row():
118
  with gr.Column():
119
  gr.Markdown("### Input Parameters")
120
  for inp in inputs:
121
  inp.render()
 
 
 
122
  gr.Button(value="Submit", variant="primary").click(fn=gradio_interface, inputs=inputs, outputs=outputs)
123
  gr.Button(value="Clear").click(fn=lambda: None)
 
124
  with gr.Column():
125
  gr.Markdown("### Output Predictions")
126
  for out in outputs:
127
  out.render()
128
- gr.Image(image_path, width=500, height=300) # Adjust the width and height as needed
129
 
130
  demo.launch()
 
5
  import tensorflow as tf
6
  import pandas as pd
7
  from joblib import load
 
8
  from tensorflow.keras.models import load_model
9
  from sklearn.preprocessing import MinMaxScaler
10
  import os
 
11
 
12
+ # Display library versions
13
  print(f"Gradio version: {gr.__version__}")
14
  print(f"NumPy version: {np.__version__}")
15
  print(f"Scikit-learn version: {sklearn.__version__}")
 
111
  ]
112
 
113
  with gr.Blocks() as demo:
114
+ gr.Markdown("<h1 style='text-align: center;'>Environmental Factor-Based Contamination Level Prediction</h1>")
115
+ gr.Markdown("This application predicts the contamination levels on different parts of a car's LiDAR system based on environmental factors such as velocity, temperature, precipitation, and humidity.")
116
+
117
+ # Layout with two columns
118
  with gr.Row():
119
  with gr.Column():
120
  gr.Markdown("### Input Parameters")
121
  for inp in inputs:
122
  inp.render()
123
+
124
+ # Display the car image immediately after inputs
125
+ gr.Image(image_path, width=500, height=300) # Adjust the width and height as needed
126
  gr.Button(value="Submit", variant="primary").click(fn=gradio_interface, inputs=inputs, outputs=outputs)
127
  gr.Button(value="Clear").click(fn=lambda: None)
128
+
129
  with gr.Column():
130
  gr.Markdown("### Output Predictions")
131
  for out in outputs:
132
  out.render()
 
133
 
134
  demo.launch()