Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,38 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import
|
|
|
4 |
from tensorflow.keras.models import load_model
|
|
|
5 |
import os
|
6 |
|
7 |
# Directory paths for the saved models
|
8 |
script_dir = os.path.dirname(os.path.abspath(__file__))
|
9 |
-
scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.
|
10 |
-
rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.
|
11 |
-
mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.
|
12 |
-
meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.
|
13 |
|
14 |
# Load the scaler and models
|
15 |
try:
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
print("Random Forest model loaded successfully.")
|
20 |
loaded_mlp_model = load_model(mlp_model_path)
|
21 |
print("MLP model loaded successfully.")
|
22 |
-
loaded_meta_model =
|
23 |
print("Meta model loaded successfully.")
|
24 |
except Exception as e:
|
25 |
print(f"Error loading models or scaler: {e}")
|
@@ -71,7 +84,7 @@ def gradio_interface(velocity, temperature, precipitation, humidity):
|
|
71 |
|
72 |
inputs = [
|
73 |
gr.Slider(minimum=0, maximum=100, value=50, step=0.5, label="Velocity (mph)"),
|
74 |
-
gr.Slider(minimum=-
|
75 |
gr.Slider(minimum=0, maximum=10, value=0, step=0.01, label="Precipitation (inch)"),
|
76 |
gr.Slider(minimum=0, maximum=100, value=50, label="Humidity (%)")
|
77 |
]
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
import json
|
4 |
+
from joblib import load
|
5 |
from tensorflow.keras.models import load_model
|
6 |
+
from sklearn.preprocessing import MinMaxScaler
|
7 |
import os
|
8 |
|
9 |
# Directory paths for the saved models
|
10 |
script_dir = os.path.dirname(os.path.abspath(__file__))
|
11 |
+
scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.json')
|
12 |
+
rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.joblib')
|
13 |
+
mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.keras')
|
14 |
+
meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.joblib')
|
15 |
|
16 |
# Load the scaler and models
|
17 |
try:
|
18 |
+
# Load the scaler
|
19 |
+
with open(scaler_path, 'r') as f:
|
20 |
+
scaler_params = json.load(f)
|
21 |
+
scaler_X = MinMaxScaler()
|
22 |
+
scaler_X.scale_ = np.array(scaler_params["scale_"])
|
23 |
+
scaler_X.min_ = np.array(scaler_params["min_"])
|
24 |
+
scaler_X.data_min_ = np.array(scaler_params["data_min_"])
|
25 |
+
scaler_X.data_max_ = np.array(scaler_params["data_max_"])
|
26 |
+
scaler_X.data_range_ = np.array(scaler_params["data_range_"])
|
27 |
+
scaler_X.n_features_in_ = scaler_params["n_features_in_"]
|
28 |
+
scaler_X.feature_names_in_ = np.array(scaler_params["feature_names_in_"])
|
29 |
+
|
30 |
+
# Load the models
|
31 |
+
loaded_rf_model = load(rf_model_path)
|
32 |
print("Random Forest model loaded successfully.")
|
33 |
loaded_mlp_model = load_model(mlp_model_path)
|
34 |
print("MLP model loaded successfully.")
|
35 |
+
loaded_meta_model = load(meta_model_path)
|
36 |
print("Meta model loaded successfully.")
|
37 |
except Exception as e:
|
38 |
print(f"Error loading models or scaler: {e}")
|
|
|
84 |
|
85 |
inputs = [
|
86 |
gr.Slider(minimum=0, maximum=100, value=50, step=0.5, label="Velocity (mph)"),
|
87 |
+
gr.Slider(minimum=-30, maximum=50, value=0, step=0.5, label="Temperature (°C)"),
|
88 |
gr.Slider(minimum=0, maximum=10, value=0, step=0.01, label="Precipitation (inch)"),
|
89 |
gr.Slider(minimum=0, maximum=100, value=50, label="Humidity (%)")
|
90 |
]
|