saba000farahani commited on
Commit
aa60e14
·
verified ·
1 Parent(s): 2c37ac3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -10
app.py CHANGED
@@ -1,25 +1,38 @@
1
  import gradio as gr
2
  import numpy as np
3
- import joblib
 
4
  from tensorflow.keras.models import load_model
 
5
  import os
6
 
7
  # Directory paths for the saved models
8
  script_dir = os.path.dirname(os.path.abspath(__file__))
9
- scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.pkl')
10
- rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.pkl')
11
- mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.h5')
12
- meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.pkl')
13
 
14
  # Load the scaler and models
15
  try:
16
- scaler_X = joblib.load(scaler_path)
17
- print("Scaler loaded successfully.")
18
- loaded_rf_model = joblib.load(rf_model_path)
 
 
 
 
 
 
 
 
 
 
 
19
  print("Random Forest model loaded successfully.")
20
  loaded_mlp_model = load_model(mlp_model_path)
21
  print("MLP model loaded successfully.")
22
- loaded_meta_model = joblib.load(meta_model_path)
23
  print("Meta model loaded successfully.")
24
  except Exception as e:
25
  print(f"Error loading models or scaler: {e}")
@@ -71,7 +84,7 @@ def gradio_interface(velocity, temperature, precipitation, humidity):
71
 
72
  inputs = [
73
  gr.Slider(minimum=0, maximum=100, value=50, step=0.5, label="Velocity (mph)"),
74
- gr.Slider(minimum=-2, maximum=20, value=0, step=0.5, label="Temperature (°C)"),
75
  gr.Slider(minimum=0, maximum=10, value=0, step=0.01, label="Precipitation (inch)"),
76
  gr.Slider(minimum=0, maximum=100, value=50, label="Humidity (%)")
77
  ]
 
1
  import gradio as gr
2
  import numpy as np
3
+ import json
4
+ from joblib import load
5
  from tensorflow.keras.models import load_model
6
+ from sklearn.preprocessing import MinMaxScaler
7
  import os
8
 
9
  # Directory paths for the saved models
10
  script_dir = os.path.dirname(os.path.abspath(__file__))
11
+ scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.json')
12
+ rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.joblib')
13
+ mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.keras')
14
+ meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.joblib')
15
 
16
  # Load the scaler and models
17
  try:
18
+ # Load the scaler
19
+ with open(scaler_path, 'r') as f:
20
+ scaler_params = json.load(f)
21
+ scaler_X = MinMaxScaler()
22
+ scaler_X.scale_ = np.array(scaler_params["scale_"])
23
+ scaler_X.min_ = np.array(scaler_params["min_"])
24
+ scaler_X.data_min_ = np.array(scaler_params["data_min_"])
25
+ scaler_X.data_max_ = np.array(scaler_params["data_max_"])
26
+ scaler_X.data_range_ = np.array(scaler_params["data_range_"])
27
+ scaler_X.n_features_in_ = scaler_params["n_features_in_"]
28
+ scaler_X.feature_names_in_ = np.array(scaler_params["feature_names_in_"])
29
+
30
+ # Load the models
31
+ loaded_rf_model = load(rf_model_path)
32
  print("Random Forest model loaded successfully.")
33
  loaded_mlp_model = load_model(mlp_model_path)
34
  print("MLP model loaded successfully.")
35
+ loaded_meta_model = load(meta_model_path)
36
  print("Meta model loaded successfully.")
37
  except Exception as e:
38
  print(f"Error loading models or scaler: {e}")
 
84
 
85
  inputs = [
86
  gr.Slider(minimum=0, maximum=100, value=50, step=0.5, label="Velocity (mph)"),
87
+ gr.Slider(minimum=-30, maximum=50, value=0, step=0.5, label="Temperature (°C)"),
88
  gr.Slider(minimum=0, maximum=10, value=0, step=0.01, label="Precipitation (inch)"),
89
  gr.Slider(minimum=0, maximum=100, value=50, label="Humidity (%)")
90
  ]