saba000farahani's picture
Update app.py
aecb06a verified
raw
history blame
5.5 kB
import gradio as gr
import numpy as np
import json
import joblib
import tensorflow as tf
import pandas as pd
from joblib import load
from tensorflow.keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import os
import sklearn
print(f"Gradio version: {gr.__version__}")
print(f"NumPy version: {np.__version__}")
print(f"Scikit-learn version: {sklearn.__version__}")
print(f"Joblib version: {joblib.__version__}")
print(f"TensorFlow version: {tf.__version__}")
print(f"Pandas version: {pd.__version__}")
# Directory paths for the saved models
script_dir = os.path.dirname(os.path.abspath(__file__))
scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.json')
rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.joblib')
mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.keras')
meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.joblib')
image_path = os.path.join(script_dir, 'toolkit', 'car.png')
# Load the scaler and models
try:
# Load the scaler
with open(scaler_path, 'r') as f:
scaler_params = json.load(f)
scaler_X = MinMaxScaler()
scaler_X.scale_ = np.array(scaler_params["scale_"])
scaler_X.min_ = np.array(scaler_params["min_"])
scaler_X.data_min_ = np.array(scaler_params["data_min_"])
scaler_X.data_max_ = np.array(scaler_params["data_max_"])
scaler_X.data_range_ = np.array(scaler_params["data_range_"])
scaler_X.n_features_in_ = scaler_params["n_features_in_"]
scaler_X.feature_names_in_ = np.array(scaler_params["feature_names_in_"])
# Load the models
loaded_rf_model = load(rf_model_path)
print("Random Forest model loaded successfully.")
loaded_mlp_model = load_model(mlp_model_path)
print("MLP model loaded successfully.")
loaded_meta_model = load(meta_model_path)
print("Meta model loaded successfully.")
except Exception as e:
print(f"Error loading models or scaler: {e}")
def predict_new_values(new_input_data):
try:
# Ensure the new input data is in the correct format
print(f"Raw Input Data: {new_input_data}")
new_input_data = np.array(new_input_data).reshape(1, -1)
# Scale the new input data
new_input_scaled = scaler_X.transform(new_input_data)
print(f"Scaled Input Data: {new_input_scaled}")
# Make predictions with both base models
mlp_predictions_new = loaded_mlp_model.predict(new_input_scaled)
rf_predictions_new = loaded_rf_model.predict(new_input_scaled)
# Combine the predictions
combined_features_new = np.concatenate([mlp_predictions_new, rf_predictions_new], axis=1)
print(f"Combined Features: {combined_features_new}")
# Use the loaded meta model to make predictions on the new data
loaded_meta_predictions_new = loaded_meta_model.predict(combined_features_new)
print(f"Meta Model Predictions: {loaded_meta_predictions_new}")
return loaded_meta_predictions_new[0]
except Exception as e:
print(f"Error in prediction: {e}")
return ["Error", "Error", "Error", "Error", "Error", "Error"]
def gradio_interface(velocity, temperature, precipitation, humidity):
try:
input_data = [velocity, temperature, precipitation, humidity]
print(f"Input Data: {input_data}")
predictions = predict_new_values(input_data)
print(f"Predictions: {predictions}")
return [
f"{predictions[0] * 100:.2f}%" if predictions[0] != "Error" else "Error",
f"{predictions[1] * 100:.2f}%" if predictions[1] != "Error" else "Error",
f"{predictions[2] * 100:.2f}%" if predictions[2] != "Error" else "Error",
f"{predictions[3] * 100:.2f}%" if predictions[3] != "Error" else "Error",
f"{predictions[4] * 100:.2f}%" if predictions[4] != "Error" else "Error",
f"{predictions[5] * 100:.2f}%" if predictions[5] != "Error" else "Error"
]
except Exception as e:
print(f"Error in Gradio interface: {e}")
return ["Error", "Error", "Error", "Error", "Error", "Error"]
inputs = [
gr.Slider(minimum=0, maximum=100, value=50, step=0.05, label="Velocity (mph)"),
gr.Slider(minimum=-2, maximum=30, value=0, step=0.5, label="Temperature (°C)"),
gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Precipitation (inch)"),
gr.Slider(minimum=0, maximum=100, value=50, label="Humidity (%)")
]
outputs = [
gr.Textbox(label="Front Left"),
gr.Textbox(label="Front Right"),
gr.Textbox(label="Left"),
gr.Textbox(label="Right"),
gr.Textbox(label="Roof"),
gr.Textbox(label="Rear")
]
with gr.Blocks() as demo:
gr.Markdown("# Environmental Factor-Based Contamination Level Prediction")
gr.Markdown("Enter the environmental factors to get the contamination levels for Front Left, Front Right, Left, Right, Roof, and Rear LiDARs.")
with gr.Row():
with gr.Column():
gr.Markdown("### Input Parameters")
for inp in inputs:
inp.render()
gr.Button(value="Submit", variant="primary").click(fn=gradio_interface, inputs=inputs, outputs=outputs)
gr.Button(value="Clear").click(fn=lambda: None)
with gr.Column():
gr.Markdown("### Output Predictions")
for out in outputs:
out.render()
gr.Image(image_path, width=500, height=300) # Adjust the width and height as needed
demo.launch()