Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,42 @@
|
|
| 1 |
-
import
|
| 2 |
import requests
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
prompt = (
|
| 8 |
f"You are an expert problem solver. Given the following problem statement:\n"
|
| 9 |
f"{problem_statement}\n\n"
|
|
@@ -12,18 +45,18 @@ def generate_more_factors(problem_statement, user_factors):
|
|
| 12 |
f"Please suggest additional factors that would complete a MECE (Mutually Exclusive, Collectively Exhaustive) "
|
| 13 |
f"set of factors responsible for solving the problem. Provide your suggestions as a bullet list."
|
| 14 |
)
|
| 15 |
-
|
| 16 |
-
#
|
| 17 |
API_URL = "https://api-inference.huggingface.co/models/gpt2"
|
| 18 |
-
token =
|
| 19 |
headers = {"Authorization": f"Bearer {token}"} if token else {}
|
| 20 |
-
|
| 21 |
response = requests.post(API_URL, headers=headers, json={"inputs": prompt})
|
| 22 |
if response.status_code == 200:
|
| 23 |
result = response.json()
|
| 24 |
if isinstance(result, list) and result and "generated_text" in result[0]:
|
| 25 |
generated = result[0]["generated_text"]
|
| 26 |
-
# Remove the prompt from the
|
| 27 |
suggestions = generated[len(prompt):].strip()
|
| 28 |
return suggestions
|
| 29 |
else:
|
|
@@ -31,59 +64,45 @@ def generate_more_factors(problem_statement, user_factors):
|
|
| 31 |
else:
|
| 32 |
return f"Error: {response.status_code} - {response.text}"
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
#
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
st.error("Please enter a problem statement before generating factors.")
|
| 75 |
-
else:
|
| 76 |
-
with st.spinner("Generating more factors..."):
|
| 77 |
-
suggestions = generate_more_factors(problem_statement, factor_inputs)
|
| 78 |
-
st.session_state.llm_suggestions = suggestions
|
| 79 |
-
|
| 80 |
-
# Level 4: LLM Suggestions Display
|
| 81 |
-
with col4:
|
| 82 |
-
st.header("Level 4: LLM Suggestions")
|
| 83 |
-
if st.session_state.llm_suggestions:
|
| 84 |
-
st.write(st.session_state.llm_suggestions)
|
| 85 |
-
else:
|
| 86 |
-
st.write("LLM suggestions will appear here after you click 'Generate More Factors'.")
|
| 87 |
|
| 88 |
-
|
| 89 |
-
main()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
import requests
|
| 3 |
+
import os
|
| 4 |
|
| 5 |
+
# Maximum number of factor textboxes allowed
|
| 6 |
+
MAX_FACTORS = 10
|
| 7 |
+
|
| 8 |
+
def add_factor(num_factors):
|
| 9 |
+
"""
|
| 10 |
+
Increase the number of visible factor rows.
|
| 11 |
+
|
| 12 |
+
Inputs:
|
| 13 |
+
1. num_factors: current number of visible factor rows
|
| 14 |
+
|
| 15 |
+
Outputs:
|
| 16 |
+
1. Updated number of visible rows
|
| 17 |
+
2. Updated visibility for each factor textbox (list of gr.update objects)
|
| 18 |
+
"""
|
| 19 |
+
new_num = num_factors + 1 if num_factors < MAX_FACTORS else num_factors
|
| 20 |
+
# Prepare update list for each textbox: show textbox if its index is less than new_num, hide otherwise.
|
| 21 |
+
updates = [gr.update(visible=True) if i < new_num else gr.update(visible=False) for i in range(MAX_FACTORS)]
|
| 22 |
+
return new_num, *updates
|
| 23 |
+
|
| 24 |
+
def generate_factors(problem_statement, *factors):
|
| 25 |
+
"""
|
| 26 |
+
Call the Hugging Face inference API to generate additional factors.
|
| 27 |
+
|
| 28 |
+
Inputs:
|
| 29 |
+
1. problem_statement: The problem statement provided by the user.
|
| 30 |
+
2. factors: A list of factor inputs (only non-empty ones will be used).
|
| 31 |
+
|
| 32 |
+
Output:
|
| 33 |
+
1. A string containing additional factor suggestions.
|
| 34 |
+
"""
|
| 35 |
+
# Filter out empty or whitespace-only factor entries
|
| 36 |
+
factor_list = [f for f in factors if f and f.strip() != ""]
|
| 37 |
+
|
| 38 |
+
# Prepare the prompt text for the LLM
|
| 39 |
+
factors_text = "\n".join([f"- {factor}" for factor in factor_list])
|
| 40 |
prompt = (
|
| 41 |
f"You are an expert problem solver. Given the following problem statement:\n"
|
| 42 |
f"{problem_statement}\n\n"
|
|
|
|
| 45 |
f"Please suggest additional factors that would complete a MECE (Mutually Exclusive, Collectively Exhaustive) "
|
| 46 |
f"set of factors responsible for solving the problem. Provide your suggestions as a bullet list."
|
| 47 |
)
|
| 48 |
+
|
| 49 |
+
# Call the Hugging Face inference API (using GPT-2 as an example; change the model as needed)
|
| 50 |
API_URL = "https://api-inference.huggingface.co/models/gpt2"
|
| 51 |
+
token = os.environ.get("HF_API_TOKEN", "")
|
| 52 |
headers = {"Authorization": f"Bearer {token}"} if token else {}
|
| 53 |
+
|
| 54 |
response = requests.post(API_URL, headers=headers, json={"inputs": prompt})
|
| 55 |
if response.status_code == 200:
|
| 56 |
result = response.json()
|
| 57 |
if isinstance(result, list) and result and "generated_text" in result[0]:
|
| 58 |
generated = result[0]["generated_text"]
|
| 59 |
+
# Remove the prompt portion from the response to return only the suggestions.
|
| 60 |
suggestions = generated[len(prompt):].strip()
|
| 61 |
return suggestions
|
| 62 |
else:
|
|
|
|
| 64 |
else:
|
| 65 |
return f"Error: {response.status_code} - {response.text}"
|
| 66 |
|
| 67 |
+
with gr.Blocks() as demo:
|
| 68 |
+
# State variable to keep track of the current number of factor rows visible.
|
| 69 |
+
num_factors_state = gr.State(value=1)
|
| 70 |
+
|
| 71 |
+
# Define the layout with 4 columns for 4 levels.
|
| 72 |
+
with gr.Row():
|
| 73 |
+
# Level 1: Problem Statement
|
| 74 |
+
with gr.Column():
|
| 75 |
+
problem_statement = gr.Textbox(label="Level 1: Problem Statement", placeholder="Enter your problem statement here")
|
| 76 |
+
|
| 77 |
+
# Level 2: Factor inputs and an Add Factor Row button
|
| 78 |
+
with gr.Column():
|
| 79 |
+
factor_textboxes = []
|
| 80 |
+
# Pre-create MAX_FACTORS textboxes. Only the first 'num_factors_state' will be visible.
|
| 81 |
+
for i in range(MAX_FACTORS):
|
| 82 |
+
tb = gr.Textbox(label=f"Factor {i+1}", visible=(i == 0), placeholder="Enter a factor")
|
| 83 |
+
factor_textboxes.append(tb)
|
| 84 |
+
add_factor_btn = gr.Button("Add Factor Row")
|
| 85 |
+
|
| 86 |
+
# Level 3: Generate More Factors button
|
| 87 |
+
with gr.Column():
|
| 88 |
+
generate_btn = gr.Button("Generate More Factors")
|
| 89 |
+
|
| 90 |
+
# Level 4: LLM suggestions display
|
| 91 |
+
with gr.Column():
|
| 92 |
+
llm_output = gr.Textbox(label="Level 4: LLM Suggestions", interactive=False, placeholder="LLM suggestions will appear here")
|
| 93 |
+
|
| 94 |
+
# When Add Factor Row is clicked, update the state and the visibility of each factor textbox.
|
| 95 |
+
add_factor_btn.click(
|
| 96 |
+
fn=add_factor,
|
| 97 |
+
inputs=num_factors_state,
|
| 98 |
+
outputs=[num_factors_state] + factor_textboxes
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# When Generate More Factors is clicked, call the LLM generation function.
|
| 102 |
+
generate_btn.click(
|
| 103 |
+
fn=generate_factors,
|
| 104 |
+
inputs=[problem_statement] + factor_textboxes,
|
| 105 |
+
outputs=llm_output
|
| 106 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
demo.launch()
|
|
|