Spaces:
Runtime error
Runtime error
File size: 1,807 Bytes
021fd45 704bddb 95d4486 6d16e6e 95d4486 b21f7ff 95d4486 b21f7ff 95d4486 deb3cb9 95d4486 deb3cb9 6d16e6e 95d4486 6d16e6e 95d4486 6d16e6e 021fd45 95d4486 6d16e6e 95d4486 6d16e6e 021fd45 6d16e6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import gradio as gr
import torch
from transformers import AutoConfig, AutoProcessor
# Import the custom model class directly.
from transformers.models.llava.modeling_llava import LlavaQwenForCausalLM
# --- Diagnostic Print (Optional) ---
config = AutoConfig.from_pretrained(
"lmms-lab/LLaVA-Video-7B-Qwen2",
trust_remote_code=True
)
print("Configuration type:", type(config))
print("Configuration architectures:", config.architectures)
# --- End Diagnostic ---
# Load the processor and the model using the custom model class.
processor = AutoProcessor.from_pretrained(
"lmms-lab/LLaVA-Video-7B-Qwen2",
trust_remote_code=True
)
model = LlavaQwenForCausalLM.from_pretrained(
"lmms-lab/LLaVA-Video-7B-Qwen2",
trust_remote_code=True
)
# Move model to the appropriate device.
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
def analyze_video(video_path):
prompt = "Analyze this video of a concert and determine the moment when the crowd is most engaged."
# Process the text and video.
inputs = processor(text=prompt, video=video_path, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate output (assumes the custom model has a generate method).
outputs = model.generate(**inputs, max_new_tokens=100)
answer = processor.decode(outputs[0], skip_special_tokens=True)
return answer
# Create the Gradio Interface.
iface = gr.Interface(
fn=analyze_video,
inputs=gr.Video(label="Upload Concert/Event Video", type="filepath"),
outputs=gr.Textbox(label="Engagement Analysis"),
title="Crowd Engagement Analyzer",
description="Upload a video of a concert or event and the model will analyze the moment when the crowd is most engaged."
)
if __name__ == "__main__":
iface.launch()
|