Spaces:
Sleeping
Sleeping
| import pathlib | |
| import gradio as gr | |
| import transformers | |
| from transformers import AutoTokenizer | |
| from transformers import AutoModelForCausalLM | |
| from transformers import GenerationConfig | |
| from typing import List, Dict, Union | |
| from typing import Any, TypeVar | |
| Pathable = Union[str, pathlib.Path] | |
| def load_model(name: str) -> Any: | |
| return AutoModelForCausalLM.from_pretrained(name) | |
| def load_tokenizer(name: str) -> Any: | |
| return AutoTokenizer.from_pretrained(name) | |
| def create_generator(): | |
| return GenerationConfig( | |
| temperature=1.0, | |
| top_p=0.75, | |
| num_beams=4, | |
| ) | |
| def generate_prompt(instruction, input=None): | |
| if input: | |
| return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
| ### Instruction: | |
| {instruction} | |
| ### Input: | |
| {input} | |
| ### Response:""" | |
| else: | |
| return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
| ### Instruction: | |
| {instruction} | |
| ### Response:""" | |
| model= load_model(name = 's3nh/pythia-410m-70k-steps-self-instruct-polish') | |
| tokenizer = load_tokenizer(name = 's3nh/pythia-410m-70k-steps-self-instruct-polish') | |
| generation_config = create_generator() | |
| def evaluate(instruction, input=None): | |
| prompt = generate_prompt(instruction, input) | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| input_ids = inputs["input_ids"] | |
| generation_output = model.generate( | |
| input_ids=input_ids, | |
| generation_config=generation_config, | |
| return_dict_in_generate=True, | |
| output_scores=True, | |
| max_new_tokens=256 | |
| ) | |
| result = [] | |
| for s in generation_output.sequences: | |
| output = tokenizer.decode(s) | |
| results.append( output.split("### Response:")[1].strip()) | |
| return ' '.join(el for el in results) | |
| def inference(text, input): | |
| output = evaluate(instruction = text, input = input) | |
| return output | |
| io = gr.Interface( | |
| inference, | |
| gr.Textbox( | |
| lines = 3, | |
| max_lines = 10, | |
| placeholder = "Add question here", | |
| interactive = True, | |
| show_label = False | |
| ), | |
| gr.Textbox( | |
| lines = 3, | |
| max_lines = 10, | |
| placeholder = "Add context here", | |
| interactive = True, | |
| show_label = False | |
| ), | |
| outputs = [gr.Textbox(lines = 1, label = 'Pythia410m', interactive = False)], | |
| cache_examples = False, | |
| ) | |
| io.launch() |