Upload 6 files
Browse files- Dockerfile.txt +20 -0
- requirements.txt +5 -0
- server.py +107 -0
- static/script.js +87 -0
- static/style.css +165 -0
- templates/index.html +66 -0
Dockerfile.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
# Set working directory
|
4 |
+
WORKDIR /code
|
5 |
+
|
6 |
+
# Install OS-level dependencies
|
7 |
+
RUN apt-get update && apt-get install -y git && rm -rf /var/lib/apt/lists/*
|
8 |
+
|
9 |
+
# Install Python dependencies
|
10 |
+
COPY requirements.txt .
|
11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
+
|
13 |
+
# Copy app files
|
14 |
+
COPY . .
|
15 |
+
|
16 |
+
# Expose the port
|
17 |
+
EXPOSE 7860
|
18 |
+
|
19 |
+
# Run the Flask app
|
20 |
+
CMD ["python", "server.py"]
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
flask
|
4 |
+
flask-cors
|
5 |
+
pillow
|
server.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from flask import Flask, request, jsonify, render_template
|
4 |
+
from flask_cors import CORS
|
5 |
+
import io
|
6 |
+
import os
|
7 |
+
from PIL import Image
|
8 |
+
from transformers import CLIPProcessor, CLIPModel
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
# Define the MIDM model
|
12 |
+
class MIDM(nn.Module):
|
13 |
+
def __init__(self, input_dim, hidden_dim, output_dim):
|
14 |
+
super(MIDM, self).__init__()
|
15 |
+
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
16 |
+
self.relu = nn.ReLU()
|
17 |
+
self.fc2 = nn.Linear(hidden_dim, output_dim)
|
18 |
+
self.sigmoid = nn.Sigmoid()
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
out = self.fc1(x)
|
22 |
+
out = self.relu(out)
|
23 |
+
out = self.fc2(out)
|
24 |
+
out = self.sigmoid(out)
|
25 |
+
return out
|
26 |
+
|
27 |
+
app = Flask(__name__, static_folder='static', template_folder='templates')
|
28 |
+
CORS(app)
|
29 |
+
|
30 |
+
# Load models once when the app starts to avoid reloading for each request
|
31 |
+
processor = None
|
32 |
+
clip_model = None
|
33 |
+
model = None
|
34 |
+
|
35 |
+
def load_models():
|
36 |
+
global processor, clip_model, model
|
37 |
+
|
38 |
+
# Load CLIP model and processor
|
39 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
40 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
41 |
+
|
42 |
+
# Initialize MIDM model
|
43 |
+
input_dim = 10 # Using first 10 features as in your notebook
|
44 |
+
hidden_dim = 64
|
45 |
+
output_dim = 1
|
46 |
+
model = MIDM(input_dim, hidden_dim, output_dim)
|
47 |
+
|
48 |
+
# For a real application, you would load your trained weights here
|
49 |
+
# model.load_state_dict(torch.load('path/to/your/model.pth'))
|
50 |
+
model.eval()
|
51 |
+
|
52 |
+
# Function to get image features using CLIP
|
53 |
+
def get_image_features(image):
|
54 |
+
"""
|
55 |
+
Extracts image features using the CLIP model.
|
56 |
+
"""
|
57 |
+
# Preprocess the image and get features
|
58 |
+
inputs = processor(images=image, return_tensors="pt")
|
59 |
+
# Only use the image encoder to get the image features
|
60 |
+
with torch.no_grad():
|
61 |
+
image_features = clip_model.get_image_features(**inputs)
|
62 |
+
return image_features
|
63 |
+
|
64 |
+
@app.route('/')
|
65 |
+
def index():
|
66 |
+
return render_template('index.html')
|
67 |
+
|
68 |
+
@app.route('/api/check-membership', methods=['POST'])
|
69 |
+
def check_membership():
|
70 |
+
# Ensure models are loaded
|
71 |
+
if processor is None or clip_model is None or model is None:
|
72 |
+
load_models()
|
73 |
+
|
74 |
+
if 'image' not in request.files:
|
75 |
+
return jsonify({'error': 'No image found in request'}), 400
|
76 |
+
|
77 |
+
try:
|
78 |
+
# Get the image from the request
|
79 |
+
file = request.files['image']
|
80 |
+
image_bytes = file.read()
|
81 |
+
image = Image.open(io.BytesIO(image_bytes))
|
82 |
+
|
83 |
+
# Get image features using CLIP
|
84 |
+
image_features = get_image_features(image)
|
85 |
+
|
86 |
+
# Preprocess the features for MIDM model
|
87 |
+
processed_features = image_features.reshape(1, -1)[:, :10] # Select first 10 features
|
88 |
+
|
89 |
+
# Perform inference
|
90 |
+
with torch.no_grad():
|
91 |
+
output = model(processed_features)
|
92 |
+
probability = output.item()
|
93 |
+
predicted = int(output > 0.5)
|
94 |
+
|
95 |
+
return jsonify({
|
96 |
+
'probability': probability,
|
97 |
+
'predicted_class': predicted,
|
98 |
+
'message': f"Predicted membership probability: {probability}",
|
99 |
+
'is_in_training_data': "Likely" if predicted == 1 else "Unlikely"
|
100 |
+
})
|
101 |
+
|
102 |
+
except Exception as e:
|
103 |
+
return jsonify({'error': str(e)}), 500
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
port = int(os.environ.get('PORT', 7860))
|
107 |
+
app.run(host='0.0.0.0', port=port)
|
static/script.js
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
document.addEventListener('DOMContentLoaded', function() {
|
2 |
+
const imageUpload = document.getElementById('image-upload');
|
3 |
+
const previewContainer = document.getElementById('preview-container');
|
4 |
+
const imagePreview = document.getElementById('image-preview');
|
5 |
+
const uploadPlaceholder = document.getElementById('upload-placeholder');
|
6 |
+
const submitButton = document.getElementById('submit-button');
|
7 |
+
const uploadForm = document.getElementById('upload-form');
|
8 |
+
const errorMessage = document.getElementById('error-message');
|
9 |
+
const resultContainer = document.getElementById('result-container');
|
10 |
+
const resultMessage = document.getElementById('result-message');
|
11 |
+
const membershipStatus = document.getElementById('membership-status');
|
12 |
+
const probabilityFill = document.getElementById('probability-fill');
|
13 |
+
const probabilityText = document.getElementById('probability-text');
|
14 |
+
const loading = document.getElementById('loading');
|
15 |
+
|
16 |
+
let selectedFile = null;
|
17 |
+
|
18 |
+
// Handle image selection
|
19 |
+
imageUpload.addEventListener('change', function(e) {
|
20 |
+
selectedFile = e.target.files[0];
|
21 |
+
|
22 |
+
if (selectedFile) {
|
23 |
+
const reader = new FileReader();
|
24 |
+
|
25 |
+
reader.onload = function(e) {
|
26 |
+
imagePreview.src = e.target.result;
|
27 |
+
previewContainer.classList.remove('hidden');
|
28 |
+
uploadPlaceholder.classList.add('hidden');
|
29 |
+
submitButton.disabled = false;
|
30 |
+
errorMessage.classList.add('hidden');
|
31 |
+
resultContainer.classList.add('hidden');
|
32 |
+
};
|
33 |
+
|
34 |
+
reader.readAsDataURL(selectedFile);
|
35 |
+
}
|
36 |
+
});
|
37 |
+
|
38 |
+
// Handle form submission
|
39 |
+
uploadForm.addEventListener('submit', function(e) {
|
40 |
+
e.preventDefault();
|
41 |
+
|
42 |
+
if (!selectedFile) {
|
43 |
+
errorMessage.textContent = 'Please select an image first';
|
44 |
+
errorMessage.classList.remove('hidden');
|
45 |
+
return;
|
46 |
+
}
|
47 |
+
|
48 |
+
// Show loading indicator
|
49 |
+
loading.classList.remove('hidden');
|
50 |
+
submitButton.disabled = true;
|
51 |
+
errorMessage.classList.add('hidden');
|
52 |
+
resultContainer.classList.add('hidden');
|
53 |
+
|
54 |
+
const formData = new FormData();
|
55 |
+
formData.append('image', selectedFile);
|
56 |
+
|
57 |
+
fetch('/api/check-membership', {
|
58 |
+
method: 'POST',
|
59 |
+
body: formData
|
60 |
+
})
|
61 |
+
.then(response => {
|
62 |
+
if (!response.ok) {
|
63 |
+
throw new Error(`Server responded with ${response.status}`);
|
64 |
+
}
|
65 |
+
return response.json();
|
66 |
+
})
|
67 |
+
.then(data => {
|
68 |
+
// Display results
|
69 |
+
resultMessage.textContent = data.message;
|
70 |
+
membershipStatus.innerHTML = `This image is <strong>${data.is_in_training_data}</strong> in the model's training data.`;
|
71 |
+
|
72 |
+
const probability = data.probability * 100;
|
73 |
+
probabilityFill.style.width = `${probability}%`;
|
74 |
+
probabilityText.textContent = `${probability.toFixed(2)}%`;
|
75 |
+
|
76 |
+
resultContainer.classList.remove('hidden');
|
77 |
+
})
|
78 |
+
.catch(error => {
|
79 |
+
errorMessage.textContent = `Error: ${error.message}`;
|
80 |
+
errorMessage.classList.remove('hidden');
|
81 |
+
})
|
82 |
+
.finally(() => {
|
83 |
+
loading.classList.add('hidden');
|
84 |
+
submitButton.disabled = false;
|
85 |
+
});
|
86 |
+
});
|
87 |
+
});
|
static/style.css
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
* {
|
2 |
+
box-sizing: border-box;
|
3 |
+
margin: 0;
|
4 |
+
padding: 0;
|
5 |
+
}
|
6 |
+
|
7 |
+
body {
|
8 |
+
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;
|
9 |
+
line-height: 1.6;
|
10 |
+
color: #333;
|
11 |
+
background-color: #f5f5f5;
|
12 |
+
}
|
13 |
+
|
14 |
+
.app {
|
15 |
+
max-width: 800px;
|
16 |
+
margin: 0 auto;
|
17 |
+
padding: 20px;
|
18 |
+
}
|
19 |
+
|
20 |
+
.app-header {
|
21 |
+
text-align: center;
|
22 |
+
margin-bottom: 30px;
|
23 |
+
}
|
24 |
+
|
25 |
+
.app-header h1 {
|
26 |
+
margin-bottom: 10px;
|
27 |
+
color: #2c3e50;
|
28 |
+
}
|
29 |
+
|
30 |
+
.upload-container {
|
31 |
+
margin-bottom: 20px;
|
32 |
+
}
|
33 |
+
|
34 |
+
.upload-label {
|
35 |
+
display: block;
|
36 |
+
cursor: pointer;
|
37 |
+
}
|
38 |
+
|
39 |
+
.upload-placeholder {
|
40 |
+
border: 2px dashed #ccc;
|
41 |
+
border-radius: 8px;
|
42 |
+
padding: 60px;
|
43 |
+
text-align: center;
|
44 |
+
color: #777;
|
45 |
+
transition: all 0.3s ease;
|
46 |
+
}
|
47 |
+
|
48 |
+
.upload-placeholder:hover {
|
49 |
+
border-color: #4CAF50;
|
50 |
+
color: #4CAF50;
|
51 |
+
}
|
52 |
+
|
53 |
+
.image-preview {
|
54 |
+
max-width: 100%;
|
55 |
+
max-height: 300px;
|
56 |
+
border-radius: 8px;
|
57 |
+
display: block;
|
58 |
+
margin: 0 auto;
|
59 |
+
}
|
60 |
+
|
61 |
+
.file-input {
|
62 |
+
display: none;
|
63 |
+
}
|
64 |
+
|
65 |
+
.submit-button {
|
66 |
+
display: block;
|
67 |
+
width: 100%;
|
68 |
+
padding: 12px;
|
69 |
+
background-color: #4CAF50;
|
70 |
+
color: white;
|
71 |
+
border: none;
|
72 |
+
border-radius: 4px;
|
73 |
+
font-size: 16px;
|
74 |
+
cursor: pointer;
|
75 |
+
margin-bottom: 20px;
|
76 |
+
transition: background-color 0.3s;
|
77 |
+
}
|
78 |
+
|
79 |
+
.submit-button:hover {
|
80 |
+
background-color: #45a049;
|
81 |
+
}
|
82 |
+
|
83 |
+
.submit-button:disabled {
|
84 |
+
background-color: #cccccc;
|
85 |
+
cursor: not-allowed;
|
86 |
+
}
|
87 |
+
|
88 |
+
.error-message {
|
89 |
+
color: #e74c3c;
|
90 |
+
margin-bottom: 20px;
|
91 |
+
padding: 10px;
|
92 |
+
background-color: #fadbd8;
|
93 |
+
border-radius: 4px;
|
94 |
+
}
|
95 |
+
|
96 |
+
.result-container {
|
97 |
+
background-color: #f9f9f9;
|
98 |
+
border-radius: 8px;
|
99 |
+
padding: 20px;
|
100 |
+
margin-top: 20px;
|
101 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
102 |
+
}
|
103 |
+
|
104 |
+
.result-container h2 {
|
105 |
+
margin-bottom: 15px;
|
106 |
+
color: #2c3e50;
|
107 |
+
}
|
108 |
+
|
109 |
+
.result-message {
|
110 |
+
margin-bottom: 15px;
|
111 |
+
}
|
112 |
+
|
113 |
+
.membership-status {
|
114 |
+
font-size: 18px;
|
115 |
+
margin-bottom: 15px;
|
116 |
+
}
|
117 |
+
|
118 |
+
.probability-bar {
|
119 |
+
height: 24px;
|
120 |
+
background-color: #e0e0e0;
|
121 |
+
border-radius: 12px;
|
122 |
+
position: relative;
|
123 |
+
overflow: hidden;
|
124 |
+
margin-top: 15px;
|
125 |
+
}
|
126 |
+
|
127 |
+
.probability-fill {
|
128 |
+
height: 100%;
|
129 |
+
background-color: #4CAF50;
|
130 |
+
transition: width 0.3s ease;
|
131 |
+
width: 0%;
|
132 |
+
}
|
133 |
+
|
134 |
+
.probability-text {
|
135 |
+
position: absolute;
|
136 |
+
top: 50%;
|
137 |
+
left: 50%;
|
138 |
+
transform: translate(-50%, -50%);
|
139 |
+
color: black;
|
140 |
+
font-weight: bold;
|
141 |
+
}
|
142 |
+
|
143 |
+
.loading {
|
144 |
+
text-align: center;
|
145 |
+
margin: 20px 0;
|
146 |
+
}
|
147 |
+
|
148 |
+
.spinner {
|
149 |
+
border: 4px solid #f3f3f3;
|
150 |
+
border-top: 4px solid #4CAF50;
|
151 |
+
border-radius: 50%;
|
152 |
+
width: 40px;
|
153 |
+
height: 40px;
|
154 |
+
animation: spin 1s linear infinite;
|
155 |
+
margin: 0 auto 10px;
|
156 |
+
}
|
157 |
+
|
158 |
+
@keyframes spin {
|
159 |
+
0% { transform: rotate(0deg); }
|
160 |
+
100% { transform: rotate(360deg); }
|
161 |
+
}
|
162 |
+
|
163 |
+
.hidden {
|
164 |
+
display: none;
|
165 |
+
}
|
templates/index.html
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Image Membership Inference</title>
|
7 |
+
<link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">
|
8 |
+
</head>
|
9 |
+
<body>
|
10 |
+
<div class="app">
|
11 |
+
<header class="app-header">
|
12 |
+
<h1>Image Membership Inference</h1>
|
13 |
+
<p>Check if an image is likely within the model's training data</p>
|
14 |
+
</header>
|
15 |
+
|
16 |
+
<main>
|
17 |
+
<form id="upload-form">
|
18 |
+
<div class="upload-container">
|
19 |
+
<label for="image-upload" class="upload-label">
|
20 |
+
<div id="preview-container" class="hidden">
|
21 |
+
<img id="image-preview" src="" alt="Preview">
|
22 |
+
</div>
|
23 |
+
<div id="upload-placeholder" class="upload-placeholder">
|
24 |
+
<span>Click to upload an image</span>
|
25 |
+
</div>
|
26 |
+
</label>
|
27 |
+
<input
|
28 |
+
id="image-upload"
|
29 |
+
type="file"
|
30 |
+
accept="image/*"
|
31 |
+
class="file-input"
|
32 |
+
/>
|
33 |
+
</div>
|
34 |
+
|
35 |
+
<button
|
36 |
+
type="submit"
|
37 |
+
id="submit-button"
|
38 |
+
class="submit-button"
|
39 |
+
disabled
|
40 |
+
>
|
41 |
+
Check Membership
|
42 |
+
</button>
|
43 |
+
</form>
|
44 |
+
|
45 |
+
<div id="error-message" class="error-message hidden"></div>
|
46 |
+
|
47 |
+
<div id="result-container" class="result-container hidden">
|
48 |
+
<h2>Result</h2>
|
49 |
+
<p id="result-message" class="result-message"></p>
|
50 |
+
<p id="membership-status" class="membership-status"></p>
|
51 |
+
<div class="probability-bar">
|
52 |
+
<div id="probability-fill" class="probability-fill"></div>
|
53 |
+
<span id="probability-text" class="probability-text"></span>
|
54 |
+
</div>
|
55 |
+
</div>
|
56 |
+
|
57 |
+
<div id="loading" class="loading hidden">
|
58 |
+
<div class="spinner"></div>
|
59 |
+
<p>Processing image...</p>
|
60 |
+
</div>
|
61 |
+
</main>
|
62 |
+
</div>
|
63 |
+
|
64 |
+
<script src="{{ url_for('static', filename='script.js') }}"></script>
|
65 |
+
</body>
|
66 |
+
</html>
|