import gradio as gr from transformers import pipeline import tensorflow import torch global pipeline global default_model_name default_model_name = "google/vit-base-patch16-224" def predict(image, model_name): if model_name == "": model_name = default_model_name pipe = pipeline(task="image-classification", model=model_name) predictions = pipe(image) return {p["label"]: p["score"] for p in predictions} with gr.Blocks() as demo: with gr.Row(): gr.Markdown( """ # Settings [Here](https://huggingface.co/models?pipeline_tag=image-classification&sort=downloads) are some popular image classification models. Or use default model **"google/vit-base-patch16-224"** """) gr.Markdown( """ # Image Classifier Result """) with gr.Row(): with gr.Column(scale=1): #input_model = gr.Textbox(label="Enter a custom model name:", value=default_model_name, scale=1) input_model = gr.Textbox(label="Enter a custom model name:", scale=1) gr.Markdown("Upload image") #images_input = gr.File(file_count="multiple", file_types=["image"], label="Input images", scale=1) #images_input = gr.Files(file_count="multiple", file_types=["image"], label="Input images", scale=1) input_image = gr.Image(label="Input Image", type="filepath") #output = gr.Label(label="Output", num_top_classes=3, scale=2) output = gr.Label(num_top_classes=10, scale=2) with gr.Row(equal_height=True): clear_button = gr.ClearButton(value="Clear", scale=0) submit_button = gr.Button(value="Submit", variant="primary", scale=0) submit_button.click(fn=predict, inputs=[input_image, input_model], outputs=output) clear_button.click(lambda: [None, None, None], outputs=[input_model, input_image, output]) demo.launch()