Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import streamlit as st
|
4 |
+
from langchain_community.vectorstores.faiss import FAISS
|
5 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
6 |
+
|
7 |
+
|
8 |
+
st.set_page_config(page_title="ICLR2025 Paper Search", layout="wide")
|
9 |
+
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
|
10 |
+
|
11 |
+
|
12 |
+
@st.cache_resource
|
13 |
+
def create_vector_store(
|
14 |
+
vector_store_path: str,
|
15 |
+
embedding_model_name: str,
|
16 |
+
) -> FAISS:
|
17 |
+
embedding_model = HuggingFaceEmbeddings(model_name=embedding_model_name)
|
18 |
+
vector_store = FAISS.load_local(
|
19 |
+
folder_path=vector_store_path,
|
20 |
+
embeddings=embedding_model,
|
21 |
+
allow_dangerous_deserialization=True,
|
22 |
+
)
|
23 |
+
return vector_store
|
24 |
+
|
25 |
+
|
26 |
+
def grab_topk(
|
27 |
+
input_text: str,
|
28 |
+
vector_store: FAISS,
|
29 |
+
top_k: int,
|
30 |
+
) -> pd.DataFrame:
|
31 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": top_k + 1})
|
32 |
+
relevant_docs = retriever.get_relevant_documents(input_text)
|
33 |
+
|
34 |
+
abstracts = list()
|
35 |
+
titles = list()
|
36 |
+
urls = list()
|
37 |
+
for relevant_doc in relevant_docs:
|
38 |
+
content = relevant_doc.page_content
|
39 |
+
url = content.split("<BEGIN_URL>")[-1].split("<END_URL>")[0]
|
40 |
+
abstract = content.split("\\n")[-1].split("<BEGIN_URL>")[0]
|
41 |
+
title = content.split("\\n")[0]
|
42 |
+
|
43 |
+
abstracts.append(abstract + "...")
|
44 |
+
titles.append(title)
|
45 |
+
urls.append(url)
|
46 |
+
return pd.DataFrame({"title": titles, "abstract": abstracts, "url": urls})
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
vector_store_path = "db"
|
51 |
+
embedding_model_name = "intfloat/multilingual-e5-large-instruct"
|
52 |
+
vector_store = create_vector_store(
|
53 |
+
vector_store_path,
|
54 |
+
embedding_model_name,
|
55 |
+
)
|
56 |
+
|
57 |
+
st.markdown("## ICLR2025")
|
58 |
+
st.markdown("- list of papers (https://iclr.cc/Downloads/2025)")
|
59 |
+
st.markdown(
|
60 |
+
"- repository (https://github.com/ohashi3399/paper-sonar?tab=readme-ov-file)"
|
61 |
+
)
|
62 |
+
input_text = st.text_input(
|
63 |
+
"query",
|
64 |
+
"",
|
65 |
+
placeholder="Enter the keywords you are interested in...",
|
66 |
+
)
|
67 |
+
top_k = st.number_input("top_k", min_value=1, value=10, step=1)
|
68 |
+
|
69 |
+
if st.button("検索"):
|
70 |
+
stripped_input_text = input_text.strip()
|
71 |
+
df = grab_topk(
|
72 |
+
stripped_input_text,
|
73 |
+
vector_store,
|
74 |
+
top_k,
|
75 |
+
)
|
76 |
+
st.table(df)
|