Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	trying compile (may cause motion degredation!) again & smoll maybe rare bug fix
Browse files
    	
        app.py
    CHANGED
    
    | @@ -114,16 +114,23 @@ pipe.unet.fuse_qkv_projections() | |
| 114 | 
             
            #pipe.enable_free_init(method="gaussian", use_fast_sampling=True)
         | 
| 115 |  | 
| 116 | 
             
            pipe.to(device=DEVICE)
         | 
| 117 | 
            -
             | 
| 118 | 
            -
             | 
| 119 |  | 
| 120 |  | 
| 121 | 
            -
             | 
| 122 | 
            -
             | 
| 123 | 
            -
             | 
| 124 | 
            -
             | 
| 125 | 
            -
             | 
| 126 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 127 | 
             
            #leave_im_emb.detach().to('cpu')
         | 
| 128 |  | 
| 129 | 
             
            @spaces.GPU(duration=20)
         | 
| @@ -345,7 +352,7 @@ def choose(img, choice, calibrate_prompts, user_id, request: gr.Request): | |
| 345 | 
             
                    choice = 0
         | 
| 346 |  | 
| 347 | 
             
                row_mask = [p.split('/')[-1] in img for p in prevs_df['paths'].to_list()]
         | 
| 348 | 
            -
                if len(prevs_df.loc[row_mask, 'user:rating'] | 
| 349 | 
             
                    prevs_df.loc[row_mask, 'user:rating'][0][user_id] = choice
         | 
| 350 | 
             
                    prevs_df.loc[row_mask, 'latest_user_to_rate'] = [user_id]
         | 
| 351 | 
             
                img, calibrate_prompts = next_image(calibrate_prompts, user_id)
         | 
|  | |
| 114 | 
             
            #pipe.enable_free_init(method="gaussian", use_fast_sampling=True)
         | 
| 115 |  | 
| 116 | 
             
            pipe.to(device=DEVICE)
         | 
| 117 | 
            +
            pipe.unet = torch.compile(pipe.unet)
         | 
| 118 | 
            +
            pipe.vae = torch.compile(pipe.vae)
         | 
| 119 |  | 
| 120 |  | 
| 121 | 
            +
            im_embs = torch.zeros(1, 1, 1, 1280, device=DEVICE, dtype=dtype)
         | 
| 122 | 
            +
            output = pipe(prompt='a person', guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[im_embs], num_inference_steps=STEPS)
         | 
| 123 | 
            +
            leave_im_emb, _ = pipe.encode_image(
         | 
| 124 | 
            +
                            output.frames[0][len(output.frames[0])//2], DEVICE, 1, output_hidden_state
         | 
| 125 | 
            +
            )
         | 
| 126 | 
            +
            assert len(output.frames[0]) == 16
         | 
| 127 | 
            +
             | 
| 128 | 
            +
            im_embs = torch.zeros(1, 1, 1, 1280, device=DEVICE, dtype=dtype)
         | 
| 129 | 
            +
            output = pipe(prompt='a person', guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[im_embs], num_inference_steps=STEPS)
         | 
| 130 | 
            +
            leave_im_emb, _ = pipe.encode_image(
         | 
| 131 | 
            +
                            output.frames[0][len(output.frames[0])//2], DEVICE, 1, output_hidden_state
         | 
| 132 | 
            +
            )
         | 
| 133 | 
            +
             | 
| 134 | 
             
            #leave_im_emb.detach().to('cpu')
         | 
| 135 |  | 
| 136 | 
             
            @spaces.GPU(duration=20)
         | 
|  | |
| 352 | 
             
                    choice = 0
         | 
| 353 |  | 
| 354 | 
             
                row_mask = [p.split('/')[-1] in img for p in prevs_df['paths'].to_list()]
         | 
| 355 | 
            +
                if len(prevs_df.loc[row_mask, 'user:rating']) > 0:
         | 
| 356 | 
             
                    prevs_df.loc[row_mask, 'user:rating'][0][user_id] = choice
         | 
| 357 | 
             
                    prevs_df.loc[row_mask, 'latest_user_to_rate'] = [user_id]
         | 
| 358 | 
             
                img, calibrate_prompts = next_image(calibrate_prompts, user_id)
         |