Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -224,6 +224,7 @@ def pluck_img(user_id, user_emb):
|
|
224 |
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]]
|
225 |
rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]]
|
226 |
time.sleep(.01)
|
|
|
227 |
# TODO optimize this lol
|
228 |
best_sim = -100000
|
229 |
for i in not_rated_rows.iterrows():
|
@@ -246,12 +247,14 @@ def background_next_image():
|
|
246 |
not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]]
|
247 |
rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]]
|
248 |
time.sleep(.01)
|
|
|
249 |
|
250 |
latest_user_id = rated_rows.iloc[-1]['latest_user_to_rate']
|
251 |
rated_rows = prevs_df[[i[1]['user:rating'].get(latest_user_id, None) is not None for i in prevs_df.iterrows()]]
|
252 |
while len(rated_rows) < 4:
|
253 |
rated_rows = prevs_df[[i[1]['user:rating'].get(latest_user_id, None) is not None for i in prevs_df.iterrows()]]
|
254 |
time.sleep(.01)
|
|
|
255 |
|
256 |
print(latest_user_id)
|
257 |
embs, ys = pluck_embs_ys(latest_user_id)
|
@@ -284,6 +287,7 @@ def pluck_embs_ys(user_id):
|
|
284 |
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]]
|
285 |
rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]]
|
286 |
time.sleep(.01)
|
|
|
287 |
|
288 |
embs = rated_rows['embeddings'].to_list()
|
289 |
ys = [i[user_id] for i in rated_rows['user:rating'].to_list()]
|
@@ -348,7 +352,7 @@ def choose(img, choice, calibrate_prompts, user_id, request: gr.Request):
|
|
348 |
choice = 0
|
349 |
|
350 |
row_mask = [p.split('/')[-1] in img for p in prevs_df['paths'].to_list()]
|
351 |
-
|
352 |
prevs_df.loc[row_mask, 'latest_user_to_rate'] = [user_id]
|
353 |
img, calibrate_prompts = next_image(calibrate_prompts, user_id)
|
354 |
return img, calibrate_prompts
|
|
|
224 |
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]]
|
225 |
rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]]
|
226 |
time.sleep(.01)
|
227 |
+
print('current user has rated all rows')
|
228 |
# TODO optimize this lol
|
229 |
best_sim = -100000
|
230 |
for i in not_rated_rows.iterrows():
|
|
|
247 |
not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]]
|
248 |
rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]]
|
249 |
time.sleep(.01)
|
250 |
+
print('all users have 8 or more rows left to rate')
|
251 |
|
252 |
latest_user_id = rated_rows.iloc[-1]['latest_user_to_rate']
|
253 |
rated_rows = prevs_df[[i[1]['user:rating'].get(latest_user_id, None) is not None for i in prevs_df.iterrows()]]
|
254 |
while len(rated_rows) < 4:
|
255 |
rated_rows = prevs_df[[i[1]['user:rating'].get(latest_user_id, None) is not None for i in prevs_df.iterrows()]]
|
256 |
time.sleep(.01)
|
257 |
+
print('latest user has < 4 rated_rows')
|
258 |
|
259 |
print(latest_user_id)
|
260 |
embs, ys = pluck_embs_ys(latest_user_id)
|
|
|
287 |
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]]
|
288 |
rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]]
|
289 |
time.sleep(.01)
|
290 |
+
print('current user has 0 not_rated_rows')
|
291 |
|
292 |
embs = rated_rows['embeddings'].to_list()
|
293 |
ys = [i[user_id] for i in rated_rows['user:rating'].to_list()]
|
|
|
352 |
choice = 0
|
353 |
|
354 |
row_mask = [p.split('/')[-1] in img for p in prevs_df['paths'].to_list()]
|
355 |
+
prevs_df.loc[row_mask, 'user:rating'][0][user_id] = choice
|
356 |
prevs_df.loc[row_mask, 'latest_user_to_rate'] = [user_id]
|
357 |
img, calibrate_prompts = next_image(calibrate_prompts, user_id)
|
358 |
return img, calibrate_prompts
|