File size: 18,618 Bytes
67e8481
 
b438118
67e8481
 
 
 
 
 
 
 
378c783
67e8481
 
 
1e01d37
67e8481
 
 
f49a6f7
67e8481
 
 
 
 
 
 
536643c
2395d0a
 
67e8481
 
 
 
 
 
 
 
 
 
 
b438118
67e8481
 
 
 
 
85c8c59
 
67e8481
 
 
 
 
 
 
 
c41646d
67e8481
 
 
 
22185c3
67e8481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c41646d
b438118
 
 
 
 
 
67e8481
b438118
2821541
67e8481
 
 
 
 
 
 
a581500
 
b438118
67e8481
 
 
 
 
 
 
 
b438118
67e8481
 
 
 
 
 
 
 
a581500
67e8481
 
 
 
 
 
 
6079d01
aa84bed
67e8481
b438118
67e8481
ad91f40
67e8481
b603a06
aa84bed
67e8481
6079d01
aa84bed
 
67e8481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a581500
 
 
 
 
 
67e8481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a581500
67e8481
 
a581500
 
 
 
 
904c30b
67e8481
 
a2d6987
67e8481
 
 
 
 
 
 
 
 
ddd3328
67e8481
ddd3328
3c0ab73
67e8481
 
 
 
 
 
 
 
 
 
 
 
 
8386247
f9c1121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba8d07
f9c1121
dba8d07
 
 
 
 
 
 
 
 
67e8481
 
 
6a97676
 
 
 
 
 
67e8481
 
 
 
 
 
f9c1121
67e8481
 
 
 
f9c1121
67e8481
 
 
 
 
 
 
 
 
 
 
5e73ac3
67e8481
f9c1121
1f63315
425903c
 
 
67e8481
 
f9c1121
67e8481
f9c1121
67e8481
fb74437
 
67e8481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68de135
3b87d0d
b438118
ae539c1
 
67e8481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb74437
b438118
67e8481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b438118
67e8481
 
 
 
 
f9c1121
67e8481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e2cfa
67e8481
 
fb74437
67e8481
 
 
 
 
 
 
 
 
bfbf47e
45d2c38
dc20521
45d2c38
d72c326
85c8c59
d72c326
2395d0a
f9c1121
 
49ba956
14fbc60
841f797
 
b438118
841f797
b603a06
841f797
67e8481
 
 
 
 
 
 
 
 
 
 
 
 
841f797
67e8481
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501


# TODO unify/merge origin and this
# TODO save & restart from (if it exists) dataframe parquet
import torch

# lol
DEVICE = 'cuda'
STEPS = 6
output_hidden_state = False
device = "cuda"
dtype = torch.bfloat16

import matplotlib.pyplot as plt
import matplotlib
import logging

from sklearn.linear_model import Ridge

import os
import imageio
import gradio as gr
import numpy as np
from sklearn.svm import SVC
from sklearn.inspection import permutation_importance
from sklearn import preprocessing
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
import sched
import threading

import random
import time
from PIL import Image
from safety_checker_improved import maybe_nsfw


torch.set_grad_enabled(False)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

prevs_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'latest_user_to_rate', 'from_user_id'])

import spaces
start_time = time.time()

####################### Setup Model
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, LCMScheduler, AutoencoderTiny, UNet2DConditionModel, AutoencoderKL, utils
utils.logging.disable_progress_bar
from transformers import CLIPTextModel
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
from transformers import CLIPVisionModelWithProjection
import uuid
import av

def write_video(file_name, images, fps=17):
    container = av.open(file_name, mode="w")

    stream = container.add_stream("h264", rate=fps)
    # stream.options = {'preset': 'faster'}
    stream.thread_count = 1
    stream.width = 512
    stream.height = 512
    stream.pix_fmt = "yuv420p"

    for img in images:
        img = np.array(img)
        img = np.round(img).astype(np.uint8)
        frame = av.VideoFrame.from_ndarray(img, format="rgb24")
        for packet in stream.encode(frame):
            container.mux(packet)
    # Flush stream
    for packet in stream.encode():
        container.mux(packet)
    # Close the file
    container.close()

def imio_write_video(file_name, images, fps=15):
    writer = imageio.get_writer(file_name, fps=fps)

    for im in images:
        writer.append_data(np.array(im))
    writer.close()


image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="sdxl_models/image_encoder", torch_dtype=dtype, 
device_map='cuda')
#vae = AutoencoderTiny.from_pretrained("madebyollin/taesd", torch_dtype=dtype)

# vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=dtype)
# vae = compile_unet(vae, config=config)



unet = UNet2DConditionModel.from_pretrained('rynmurdock/Sea_Claws', subfolder='unet',).to(dtype).to('cpu')
text_encoder = CLIPTextModel.from_pretrained('rynmurdock/Sea_Claws', subfolder='text_encoder', 
device_map='cpu').to(dtype)

adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
pipe = AnimateDiffPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", motion_adapter=adapter, image_encoder=image_encoder, torch_dtype=dtype, unet=unet, text_encoder=text_encoder)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora",)
pipe.set_adapters(["lcm-lora"], [.9])
pipe.fuse_lora()


#pipe = AnimateDiffPipeline.from_pretrained('emilianJR/epiCRealism', torch_dtype=dtype, image_encoder=image_encoder)
#pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
#repo = "ByteDance/AnimateDiff-Lightning"
#ckpt = f"animatediff_lightning_4step_diffusers.safetensors"


pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15_vit-G.bin", map_location='cpu')
# This IP adapter improves outputs substantially.
pipe.set_ip_adapter_scale(.9)
pipe.unet.fuse_qkv_projections()
#pipe.enable_free_init(method="gaussian", use_fast_sampling=True)

pipe.to(device=DEVICE)
#pipe.unet = torch.compile(pipe.unet)
#pipe.vae = torch.compile(pipe.vae)

@spaces.GPU()
def generate_gpu(in_im_embs):
    in_im_embs = in_im_embs.to('cuda').unsqueeze(0).unsqueeze(0)
    output = pipe(prompt='', guidance_scale=0, added_cond_kwargs={}, ip_adapter_image_embeds=[in_im_embs], num_inference_steps=STEPS)
    im_emb, _ = pipe.encode_image(
                output.frames[0][len(output.frames[0])//2], 'cuda', 1, output_hidden_state
            )
    im_emb = im_emb.detach().to('cpu').to(torch.float32)
    return output, im_emb


def generate(in_im_embs):
    output, im_emb = generate_gpu(in_im_embs)
    nsfw = maybe_nsfw(output.frames[0][len(output.frames[0])//2])
    
    name = str(uuid.uuid4()).replace("-", "")
    path = f"/tmp/{name}.mp4"
    
    if nsfw:
        gr.Warning("NSFW content detected.")
        # TODO could return an automatic dislike of auto dislike on the backend for neither as well; just would need refactoring.
        return None, im_emb
    
    
    output.frames[0] = output.frames[0] + list(reversed(output.frames[0]))

    write_video(path, output.frames[0])
    return path, im_emb


#######################

def get_user_emb(embs, ys):
    # handle case where every instance of calibration videos is 'Neither' or 'Like' or 'Dislike'
    if len(list(ys)) <= 7:
        aways = [.01*torch.randn(1280) for i in range(3)]
        embs += aways
        awal = [0 for i in range(3)]
        ys += awal
        print('Fixing only one feedback class available.\n')
    
    indices = list(range(len(embs)))
    # sample only as many negatives as there are positives
    pos_indices = [i for i in indices if ys[i] == 1]
    neg_indices = [i for i in indices if ys[i] == 0]
    #lower = min(len(pos_indices), len(neg_indices))
    #neg_indices = random.sample(neg_indices, lower)
    #pos_indices = random.sample(pos_indices, lower)
    
    
    # we may have just encountered a rare multi-threading diffusers issue (https://github.com/huggingface/diffusers/issues/5749);
    # this ends up adding a rating but losing an embedding, it seems.
    # let's take off a rating if so to continue without indexing errors.
    if len(ys) > len(embs):
        ys.pop(-1)
    
    feature_embs = torch.stack([embs[i].squeeze().to('cpu') for i in indices]).to('cpu')
    #scaler = preprocessing.StandardScaler().fit(feature_embs)
    #feature_embs = scaler.transform(feature_embs)
    
    
    if feature_embs.norm() != 0:
        feature_embs = feature_embs / feature_embs.norm()
    
    chosen_y = np.array([ys[i] for i in indices])
    
    #lin_class = Ridge(fit_intercept=False).fit(feature_embs, chosen_y)
    lin_class = SVC(max_iter=20, kernel='linear', C=.1, class_weight='balanced').fit(feature_embs, chosen_y)
    coef_ = torch.tensor(lin_class.coef_, dtype=torch.double).detach().to('cpu')
    coef_ = coef_ / coef_.abs().max() * 3

    w = 1# if len(embs) % 2 == 0 else 0
    im_emb = w * coef_.to(dtype=dtype)
    return im_emb


def pluck_img(user_id, user_emb):
    not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, 'gone') == 'gone' for i in prevs_df.iterrows()]]
    while len(not_rated_rows) == 0:
        not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, 'gone') == 'gone' for i in prevs_df.iterrows()]]
        time.sleep(.001)
    # TODO optimize this lol
    best_sim = -100000
    for i in not_rated_rows.iterrows():
        # TODO sloppy .to but it is 3am.
        sim = torch.cosine_similarity(i[1]['embeddings'].detach().to('cpu'), user_emb.detach().to('cpu'))
        if sim > best_sim:
            best_sim = sim
            best_row = i[1]
    img = best_row['paths']
    return img


def background_next_image():
        global prevs_df
        # only let it get N (maybe 3) ahead of the user
        #not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]]
        rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]]
        while len(rated_rows) < 4:
        #    not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]]
            rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]]
            time.sleep(.01)

        user_id_list = set(rated_rows['latest_user_to_rate'].to_list())
        for uid in user_id_list:
            rated_rows = prevs_df[[i[1]['user:rating'].get(uid, None) is not None for i in prevs_df.iterrows()]]
            not_rated_rows = prevs_df[[i[1]['user:rating'].get(uid, None) is None for i in prevs_df.iterrows()]]
            
            # we need to intersect not_rated_rows from this user's embed > 7. Just add a new column on which user_id spawned the 
            #   media. 
            
            unrated_from_user = not_rated_rows[[i[1]['from_user_id'] == uid for i in not_rated_rows.iterrows()]]
            rated_from_user = rated_rows[[i[1]['from_user_id'] == uid for i in rated_rows.iterrows()]]

            # we pop previous ratings if there are > 10
            if len(rated_from_user) >= 10:
                oldest = rated_from_user.iloc[0]['paths']
                prevs_df = prevs_df[prevs_df['paths'] != oldest]
            # we don't compute more after 10 are in the queue for them
            if len(unrated_from_user) >= 10:
                continue
            
            if len(rated_rows) < 4:
                continue
            
            embs, ys = pluck_embs_ys(uid)
            
            user_emb = get_user_emb(embs, ys)
            img, embs = generate(user_emb)
            if img:
                tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'latest_user_to_rate'])
                tmp_df['paths'] = [img]
                tmp_df['embeddings'] = [embs]
                tmp_df['user:rating'] = [{' ': ' '}]
                tmp_df['from_user_id'] = [uid]
                prevs_df = pd.concat((prevs_df, tmp_df))
                
                # we can free up storage by deleting the image
                if len(prevs_df) > 30:
                    cands = prevs_df.iloc[6:]
                    cands['sum_bad_ratings'] = [sum([int(t==0) for t in i.values()]) for i in cands['user:rating']]
                    worst_row = cands.loc[cands['sum_bad_ratings']==cands['sum_bad_ratings'].max()].iloc[0]
                    worst_path = worst_row['paths']
                    if os.path.isfile(worst_path):
                        os.remove(worst_path)
                    # only keep x images & embeddings & ips, then remove the most often disliked besides calibrating
                    prevs_df = prevs_df[prevs_df['paths'] != worst_path]

def pluck_embs_ys(user_id):
    rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]]
    #not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]]
    #while len(not_rated_rows) == 0:
    #    not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]]
    #    rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]]
    #    time.sleep(.01)
    #    print('current user has 0 not_rated_rows')
    
    embs = rated_rows['embeddings'].to_list()
    ys = [i[user_id] for i in rated_rows['user:rating'].to_list()]
    return embs, ys

def next_image(calibrate_prompts, user_id):
    
    with torch.no_grad():
        if len(calibrate_prompts) > 0:
            cal_video = calibrate_prompts.pop(0)
            image = prevs_df[prevs_df['paths'] == cal_video]['paths'].to_list()[0]
            
            return image, calibrate_prompts
        else:
            embs, ys = pluck_embs_ys(user_id)
            user_emb = get_user_emb(embs, ys)
            image = pluck_img(user_id, user_emb)
            return image, calibrate_prompts









def start(_, calibrate_prompts, user_id, request: gr.Request):
    user_id = int(str(time.time())[-7:].replace('.', ''))
    image, calibrate_prompts = next_image(calibrate_prompts, user_id)
    return [
            gr.Button(value='Like (L)', interactive=True), 
            gr.Button(value='Neither (Space)', interactive=True, visible=False), 
            gr.Button(value='Dislike (A)', interactive=True),
            gr.Button(value='Start', interactive=False),
            image,
            calibrate_prompts,
            user_id
            ]


def choose(img, choice, calibrate_prompts, user_id, request: gr.Request):
    global prevs_df
    
    
    if choice == 'Like (L)':
        choice = 1
    elif choice == 'Neither (Space)':
        img, calibrate_prompts = next_image(calibrate_prompts, user_id)
        return img, calibrate_prompts
    else:
        choice = 0
    
    # if we detected NSFW, leave that area of latent space regardless of how they rated chosen.
    # TODO skip allowing rating & just continue
    if img == None:
        choice = 0
    
    row_mask = [p.split('/')[-1] in img for p in prevs_df['paths'].to_list()]
    # if it's still in the dataframe, add the choice
    if len(prevs_df.loc[row_mask, 'user:rating']) > 0:
        prevs_df.loc[row_mask, 'user:rating'][0][user_id] = choice
        prevs_df.loc[row_mask, 'latest_user_to_rate'] = [user_id]
    img, calibrate_prompts = next_image(calibrate_prompts, user_id)
    return img, calibrate_prompts

css = '''.gradio-container{max-width: 700px !important}
#description{text-align: center}
#description h1, #description h3{display: block}
#description p{margin-top: 0}
.fade-in-out {animation: fadeInOut 3s forwards}
@keyframes fadeInOut {
    0% {
      background: var(--bg-color);
    }
    100% {
      background: var(--button-secondary-background-fill);
    }
}
'''
js_head = '''
<script>
document.addEventListener('keydown', function(event) {
    if (event.key === 'a' || event.key === 'A') {
        // Trigger click on 'dislike' if 'A' is pressed
        document.getElementById('dislike').click();
    } else if (event.key === ' ' || event.keyCode === 32) {
        // Trigger click on 'neither' if Spacebar is pressed
        document.getElementById('neither').click();
    } else if (event.key === 'l' || event.key === 'L') {
        // Trigger click on 'like' if 'L' is pressed
        document.getElementById('like').click();
    }
});
function fadeInOut(button, color) {
  button.style.setProperty('--bg-color', color);
  button.classList.remove('fade-in-out');
  void button.offsetWidth; // This line forces a repaint by accessing a DOM property
  
  button.classList.add('fade-in-out');
  button.addEventListener('animationend', () => {
    button.classList.remove('fade-in-out'); // Reset the animation state
  }, {once: true});
}
document.body.addEventListener('click', function(event) {
    const target = event.target;
    if (target.id === 'dislike') {
      fadeInOut(target, '#ff1717');
    } else if (target.id === 'like') {
      fadeInOut(target, '#006500');
    } else if (target.id === 'neither') {
      fadeInOut(target, '#cccccc');
    }
});

</script>
'''

with gr.Blocks(css=css, head=js_head) as demo:
    gr.Markdown('''# Blue Tigers
### Generative Recommenders for Exporation of Video

Explore the latent space without text prompts based on your preferences. Learn more on [the write-up](https://rynmurdock.github.io/posts/2024/3/generative_recomenders/).
    ''', elem_id="description")
    user_id = gr.State()
    # calibration videos -- this is a misnomer now :D
    calibrate_prompts = gr.State([
    './first.mp4',
    './second.mp4',
    './third.mp4',
    './fourth.mp4',
    './fifth.mp4',
    './sixth.mp4',
    ])
    def l():
        return None

    with gr.Row(elem_id='output-image'):
        img = gr.Video(
        label='Lightning',
        autoplay=True,
        interactive=False,
        height=512,
        width=512,
        #include_audio=False,
        elem_id="video_output"
       )
        img.play(l, js='''document.querySelector('[data-testid="Lightning-player"]').loop = true''')
    with gr.Row(equal_height=True):
        b3 = gr.Button(value='Dislike (A)', interactive=False, elem_id="dislike")
        b2 = gr.Button(value='Neither (Space)', interactive=False, elem_id="neither", visible=False)
        b1 = gr.Button(value='Like (L)', interactive=False, elem_id="like")
        b1.click(
        choose, 
        [img, b1, calibrate_prompts, user_id],
        [img, calibrate_prompts],
        )
        b2.click(
        choose, 
        [img, b2, calibrate_prompts, user_id],
        [img, calibrate_prompts],
        )
        b3.click(
        choose, 
        [img, b3, calibrate_prompts, user_id],
        [img, calibrate_prompts],
        )
    with gr.Row():
        b4 = gr.Button(value='Start')
        b4.click(start,
                 [b4, calibrate_prompts, user_id],
                 [b1, b2, b3, b4, img, calibrate_prompts, user_id]
                 )
    with gr.Row():
        html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several videos and then roam. </ div><br><br><br>
<div style='text-align:center; font-size:14px'>Note that while the AnimateLCM model with NSFW filtering is unlikely to produce NSFW images, this may still occur, and users should avoid NSFW content when rating.
</ div>
<br><br>
<div style='text-align:center; font-size:14px'>Thanks to @multimodalart for their contributions to the demo, esp. the interface and @maxbittker for feedback.
</ div>''')

# TODO quiet logging
log = logging.getLogger('log_here')
log.setLevel(logging.ERROR)

scheduler = BackgroundScheduler()
scheduler.add_job(func=background_next_image, trigger="interval", seconds=.3)
scheduler.start()

#thread = threading.Thread(target=background_next_image,)
#thread.start()

@spaces.GPU()
def encode_space(x):
    im_emb, _ = pipe.encode_image(
                image, DEVICE, 1, output_hidden_state
            )
    return im_emb.detach().to('cpu').to(torch.float32)

# prep our calibration prompts
for im in [
    './first.mp4',
    './second.mp4',
    './third.mp4',
    './fourth.mp4',
    './fifth.mp4',
    './sixth.mp4',
    ]:
    tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating'])
    tmp_df['paths'] = [im]
    image = list(imageio.imiter(im))
    image = image[len(image)//2]
    im_emb = encode_space(image)

    tmp_df['embeddings'] = [im_emb.detach().to('cpu')]
    tmp_df['user:rating'] = [{' ': ' '}]
    prevs_df = pd.concat((prevs_df, tmp_df))


demo.launch(share=True)